Nav: Home

Magnetic liquids improve energy efficiency of buildings

January 17, 2018

(Jena, Germany) Climate protection and the reduction of carbon dioxide emissions have been on top of global development agendas. Accordingly, research and development projects have been conducted on national and international levels, which aim for the improvement of the CO2-footprint in diverse processes. Apart from particularly energy-intensive sectors of the industry, the building sector in particular is among the biggest CO2-emmitters: from residential homes, manufacturing facilities and storage depots to big commercial buildings, about 40 percent of the energy consumption within the EU are due to the heating, cooling, air conditioning and lighting of buildings.

Considering next-generation smart windows and façade devices, one aspect of this problem is addressed in the research project Large-Area Fluidic Windows (LaWin) which has been coordinated at the Friedrich Schiller University Jena, Germany, since 2015. A new type of such smart windows was now presented in the upcoming issue of Advanced Sustainable Systems. In their paper 'Large-Area Smart Window with Tunable Shading and Solar-Thermal Harvesting Ability Based on Remote Switching of a Magneto-Active Liquid' the Jena materials researchers introduce prototypes of a window that changes its light permeability at the touch of a button, and, at the same time, can be used for solar-thermal energy harvesting (DOI: 10.1002/adsu.201700140). The subject will be featured on the title page of the journal.

Liquids in windows and façades

"Our project's key feature is the use of liquids in windows and façades, for example, as heat carriers or to enable additional functions," explains Lothar Wondraczek, the project's coordinator. "To this end we develop new glass materials, into which large-area channel structures are integrated. These are used for circulating functional fluids."

In latest prototypes, the liquid is loaded with the nanoscale magnetic iron particles. These can be extracted from the liquid with the help of a magnet. Vice versa, they can be re-suspended by simply switching-off the magnet. "Depending on the number of the iron particles in the liquid, the liquid itself takes on different shades of grey, or it will even turn completely black," Wondraczek explains. "Then, it becomes possible to automatically adjust the incidence of light, or to harvest solar heat which can then be put to further use within the building." The efficiency in terms of heat gain per area is comparable with that of state-of-the-art solar thermal facilities. But unlike those, the present system can be readily integrated in a vertical façade. Switching between on and off - the release or capture of particles - happens in a separate tank. An electrical connection at the windows is not necessary.

Indoor air conditioning, tunable shading and harvesting of solar heat

"The greatest advantage of large-scale fluidic windows is that they can substitute air conditioning systems, daylight regulation systems and for instance warm water processing," stresses Wondraczek, who holds the chair of Glass Chemistry at the University of Jena. Developing cost-effective large-size window glass modules is key. On the one hand the glass elements need to include the channels, on the other hand they maintain their performance over the whole lifespan of the building. Finally, they have to provide the ability for integration with standard window manufacture technologies in frames of double or triple glazings. With the present prototypes which were manufactured on a scale of around 200 square meters, the research consortium demonstrated that those requirements can be fulfilled.

Over the period of 2015-2017, the project received a grant of 5.9 million Euros from the European Union within the framework of the Horizon-2020-Programme for Industrial Leadership. A further 2.2 million Euro have been added by eleven industry partners who have been members of the consortium. After the end of the first funding period, commercialisation of first applications is planned for this year.
-end-


Friedrich-Schiller-Universitaet Jena

Related Energy Articles:

Quantum vacuum: Less than zero energy
According to quantum physics, energy can be 'borrowed' -- at least for some time.
New discipline proposed: Macro-energy systems -- the science of the energy transition
In a perspective published in Joule on Aug. 14, a group of researchers led by Stanford University propose a new academic discipline, 'macro-energy systems,' as the science of the energy transition.
How much energy storage costs must fall to reach renewable energy's full potential
The cost of energy storage will be critical in determining how much renewable energy can contribute to the decarbonization of electricity.
Energy from seawater
A new battery made from affordable and durable materials generates energy from places where salt and fresh waters mingle.
Shifts to renewable energy can drive up energy poverty, PSU study finds
Efforts to shift away from fossil fuels and replace oil and coal with renewable energy sources can help reduce carbon emissions but do so at the expense of increased inequality, according to a new Portland State University study
More Energy News and Energy Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...