Nav: Home

How living systems compute solutions to problems

January 17, 2018

How do decisions get made in the natural world? One possibility is that the individuals or components in biological systems collectively compute solutions to challenges they face in their environments. Consider that fish navigate complex environments to find food and escape predators. Some fish do this by moving together as a unit, sometimes forming incredibly organized schools. The members of a beehive are collectively able to determine which of two nest sites is better. Humans are able to make accurate, coherent decisions even though the process underlying those decisions may involve billions of neurons, each with its own opinion. There are no leaders in these groups and different individuals have different preferences about where to go or what to do. No individual fish or bee or neuron has enough information by itself, but together they can accomplish amazing things. How is this possible?

In research recently published in Science Advances, researchers Eleanor Brush (University of Maryland) with David Krakauer and Jessica Flack of the Santa Fe Institute addressed this question by studying the emergence of social structure in primate social groups. In a social group of pigtailed macaques (Macaca nemestrina), pairs of monkeys fight each other and get a feel for each other's fighting prowess. When one eventually realizes it is likely to lose in future fights, it will start to bare its teeth in subordination to the other, communicating its agreement to be subordinate. This is the information accumulation portion of the collective computation -- the monkeys are going out into the world and semi-indecently collecting information about their social environments. They then "share" this information, such that the monkeys about whose fighting abilities garner a high degree of consensus are perceived as having high power within the group. This is the information aggregation or pooling phase of the collective computation. And the aggregated information resulting from pooling of opinions is very useful: it tells the monkeys which group members are widely perceived as powerful and hence who would be a good ally during a fight.

In previous work, Krakauer and Flack showed that the monkeys who emerge as powerful are usually the best fighters and that it is beneficial to have only three or four monkeys in such powerful positions. It remained a mystery, however, how it happens that the monkeys' power accurately reflects their fighting ability and how the group tunes how many powerful individuals there are. Brush and colleagues formulated a mathematical description of this collective computation and found that all it takes for the group members to be able to produce an accurate distribution of power is to have individuals who don't want to be subordinate -- in other words, stubborn individuals who have strong preferences -- a condition likely met in reality. Additionally, changing how aggressively the animals fight with each other can change how many individuals emerge as disproportionately powerful.

According to Brush, "The mathematical description of collective computation of power structure in the monkey group turns out to be very similar to the equations that neuroscientists use to describe collective computation by neurons, even though the neurons are not 'fighting' about power."

Krakauer says, "The principles common to both systems are the principles of information accumulation and aggregation and possibly that the components have strong opinions or preferences that influence how likely they are to change their behavior given the information they've accumulated."

"Contrary to the colloquial wisdom," Flack says, "strong preferences at the individual level can produce better collective computations at the group level."

Santa Fe Institute

Related Neurons Articles:

New tool to identify and control neurons
One of the big challenges in the Neuroscience field is to understand how connections and communications trigger our behavior.
Neurons that regenerate, neurons that die
In a new study published in Neuron, investigators report on a transcription factor that they have found that can help certain neurons regenerate, while simultaneously killing others.
How neurons use crowdsourcing to make decisions
When many individual neurons collect data, how do they reach a unanimous decision?
Neurons can learn temporal patterns
Individual neurons can learn not only single responses to a particular signal, but also a series of reactions at precisely timed intervals.
A turbo engine for tracing neurons
Putting a turbo engine into an old car gives it an entirely new life -- suddenly it can go further, faster.
Brain neurons help keep track of time
Turning the theory of how the human brain perceives time on its head, a novel analysis in mice reveals that dopamine neuron activity plays a key role in judgment of time, slowing down the internal clock.
During infancy, neurons are still finding their places
Researchers have identified a large population of previously unrecognized young neurons that migrate in the human brain during the first few months of life, contributing to the expansion of the frontal lobe, a region important for social behavior and executive function.
How many types of neurons are there in the brain?
For decades, scientists have struggled to develop a comprehensive census of cell types in the brain.
Molecular body guards for neurons
In the brain, patterns of neural activity are perfectly balanced.
Engineering researchers use laser to 'weld' neurons
University of Alberta researchers have developed a method of connecting neurons, using ultrashort laser pulses -- a breakthrough technique that opens the door to new medical research and treatment opportunities.

Related Neurons Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".