Nav: Home

Dulling cancer therapy's double-edged sword

January 17, 2018

Researchers have discovered that killing cancer cells can actually have the unintended effect of fueling the proliferation of residual, living cancer cells, ultimately leading to aggressive tumor progression.

The findings of the multi-institutional research team -- including scientists from the Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Beth Israel Deaconness Medical Center and the Institute for Systems Biology -- contradict the conventional approach to treating cancer.

In their study, published in the January issue of the Journal of Experimental Medicine, the researchers describe how chemotherapy or other targeted therapies create a build-up of tumor cell debris, comprised of dead, fragmented cancer cells. In animal models, the team observed that this cell debris sets off an inflammatory cascade in the body and also encourages lingering, living cancer cells to develop into new tumors.

"Our findings reveal that conventional cancer therapy is essentially a double-edged sword," says co-senior author on the study Mark Kieran, MD, PhD, who directs the Pediatric Brain Tumor Program at Dana-Farber/Boston Children's and is an associate professor of pediatrics at Harvard Medical School. "But more importantly, we also found a pathway to block the tumor-stimulating effects of cancer cell debris -- using a class of mediators called resolvins."

A perfect storm

The discovery took more than a year of close observation of mouse models of cancer. The team cultured different kinds of cancer cells and used chemotherapy and other targeted drugs to kill those cells in vitro. Then, the "drug-generated debris" was collected and combined with living tumor cells both in vitro and in vivo.

Strikingly, they saw that the co-mingling of debris and living tumors cells resulted in 100 times more accelerated tumor growth. And the culprit? A particular molecule -- named phosphatidylserine -- that appears during the cell death process that remains exposed on the dead cell fragments.

Once detected by the immune system, phosphatidylserine sets off a flood of pro-inflammatory activity, creating the perfect storm for unfettered tumor growth from cancer cells that evaded initial drugging. These tumors are then resistant to further chemotherapy.

Resolving tumors once and for all?

Enter resolvins: molecules found naturally in the body that turn off inflammation and enhance tissue health. Given their qualities, the team surmised that tumor growth might be preventable with a profusion of resolvins, allowing the body to clear away dead cell debris after chemotherapy much faster than normally occurs.

To test their hypothesis, they administered resolvins in combination with a variety of conventional cancer therapies to see what the effect would be on tumor growth. Kieran and his team and found that resolvins enhance the body's clearance of cell debris from multiple types of tumors and counteract the inflammatory signals that the body's immune cells elicit in response to the debris.

These results suggest a possible application for resolvins in complement with chemotherapy, radiation or targeted cancer therapies as a means to reduce tumor growth and recurrence.

"Resolvins are already in advanced clinical trials for a number of inflammatory diseases and can be rapidly translated to the oncology population," Kieran says.
-end-
This work was supported by the National Cancer Institute, the Stop and Shop Pediatric Brain Tumor Fund, the CJ Buckley Pediatric Brain Tumor Fund, Alex Lemonade Stand, Molly's Magic Wand for Pediatric Brain Tumors, the Markoff Foundation Art-In-Giving Foundation, the Kamen Foundation, Jared Branfman Sun owers for Life and The Wellcome Trust program.

Boston Children's Hospital

Related Cancer Articles:

Radiotherapy for invasive breast cancer increases the risk of second primary lung cancer
East Asian female breast cancer patients receiving radiotherapy have a higher risk of developing second primary lung cancer.
Cancer genomics continued: Triple negative breast cancer and cancer immunotherapy
Continuing PLOS Medicine's special issue on cancer genomics, Christos Hatzis of Yale University, New Haven, Conn., USA and colleagues describe a new subtype of triple negative breast cancer that may be more amenable to treatment than other cases of this difficult-to-treat disease.
Metabolite that promotes cancer cell transformation and colorectal cancer spread identified
Osaka University researchers revealed that the metabolite D-2-hydroxyglurate (D-2HG) promotes epithelial-mesenchymal transition of colorectal cancer cells, leading them to develop features of lower adherence to neighboring cells, increased invasiveness, and greater likelihood of metastatic spread.
UH Cancer Center researcher finds new driver of an aggressive form of brain cancer
University of Hawai'i Cancer Center researchers have identified an essential driver of tumor cell invasion in glioblastoma, the most aggressive form of brain cancer that can occur at any age.
UH Cancer Center researchers develop algorithm to find precise cancer treatments
University of Hawai'i Cancer Center researchers developed a computational algorithm to analyze 'Big Data' obtained from tumor samples to better understand and treat cancer.
New analytical technology to quantify anti-cancer drugs inside cancer cells
University of Oklahoma researchers will apply a new analytical technology that could ultimately provide a powerful tool for improved treatment of cancer patients in Oklahoma and beyond.
Radiotherapy for lung cancer patients is linked to increased risk of non-cancer deaths
Researchers have found that treating patients who have early stage non-small cell lung cancer with a type of radiotherapy called stereotactic body radiation therapy is associated with a small but increased risk of death from causes other than cancer.
Cancer expert says public health and prevention measures are key to defeating cancer
Is investment in research to develop new treatments the best approach to controlling cancer?
UI Cancer Center, Governors State to address cancer disparities in south suburbs
The University of Illinois Cancer Center and Governors State University have received a joint four-year, $1.5 million grant from the National Cancer Institute to help both institutions conduct community-based research to reduce cancer-related health disparities in Chicago's south suburbs.
Leading cancer research organizations to host international cancer immunotherapy conference
The Cancer Research Institute, the Association for Cancer Immunotherapy, the European Academy of Tumor Immunology, and the American Association for Cancer Research will join forces to sponsor the first International Cancer Immunotherapy Conference at the Sheraton New York Times Square Hotel in New York, Sept.

Related Cancer Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Changing The World
What does it take to change the world for the better? This hour, TED speakers explore ideas on activism—what motivates it, why it matters, and how each of us can make a difference. Guests include civil rights activist Ruby Sales, labor leader and civil rights activist Dolores Huerta, author Jeremy Heimans, "craftivist" Sarah Corbett, and designer and futurist Angela Oguntala.
Now Playing: Science for the People

#521 The Curious Life of Krill
Krill may be one of the most abundant forms of life on our planet... but it turns out we don't know that much about them. For a create that underpins a massive ocean ecosystem and lives in our oceans in massive numbers, they're surprisingly difficult to study. We sit down and shine some light on these underappreciated crustaceans with Stephen Nicol, Adjunct Professor at the University of Tasmania, Scientific Advisor to the Association of Responsible Krill Harvesting Companies, and author of the book "The Curious Life of Krill: A Conservation Story from the Bottom of the World".