Measuring AI's ability to learn is difficult

January 17, 2019

Organizations looking to benefit from the artificial intelligence (AI) revolution should be cautious about putting all their eggs in one basket, a study from the University of Waterloo has found.

In a study published in Nature Machine Intelligence, Waterloo researchers found that contrary to conventional wisdom, there can be no exact method for deciding whether a given problem may be successfully solved by machine learning tools.

"We have to proceed with caution," said Shai Ben-David, lead author of the study and a professor in Waterloo's School of Computer Science. "There is a big trend of tools that are very successful, but nobody understands why they are successful, and nobody can provide guarantees that they will continue to be successful.

"In situations where just a yes or no answer is required, we know exactly what can or cannot be done by machine learning algorithms. However, when it comes to more general setups, we can't distinguish learnable from un-learnable tasks."

In the study, Ben-David and his colleagues considered a learning model called estimating the maximum (EMX), which captures many common machine learning tasks. For example, tasks like identifying the best place to locate a set of distribution facilities to optimize their accessibility for future expected consumers. The research found that no mathematical method would ever be able to tell, given a task in that model, whether an AI-based tool could handle that task or not.

"This finding comes as a surprise to the research community since it has long been believed that once a precise description of a task is provided, it can then be determined whether machine learning algorithms will be able to learn and carry out that task," said Ben-David.
-end-
The study, Learnability can be Undecidable, was co-authored by Ben-David, Pavel Hrubeš from the Institute of Mathematics of the Academy of Sciences in the Czech Republic, Shay Morgan from the Department of Computer Science, Princeton University, Amir Shpilka, Department of Computer Science, Tel Aviv University, and Amir Yehudayoff from the Department of Mathematics, Technion-IIT.

University of Waterloo

Related Artificial Intelligence Articles from Brightsurf:

Physics can assist with key challenges in artificial intelligence
Two challenges in the field of artificial intelligence have been solved by adopting a physical concept introduced a century ago to describe the formation of a magnet during a process of iron bulk cooling.

A survey on artificial intelligence in chest imaging of COVID-19
Announcing a new article publication for BIO Integration journal. In this review article the authors consider the application of artificial intelligence imaging analysis methods for COVID-19 clinical diagnosis.

Using artificial intelligence can improve pregnant women's health
Disorders such as congenital heart birth defects or macrosomia, gestational diabetes and preterm birth can be detected earlier when artificial intelligence is used.

Artificial intelligence (AI)-aided disease prediction
Artificial Intelligence (AI)-aided Disease Prediction https://doi.org/10.15212/bioi-2020-0017 Announcing a new article publication for BIO Integration journal.

Artificial intelligence dives into thousands of WW2 photographs
In a new international cross disciplinary study, researchers from Aarhus University, Denmark and Tampere University, Finland have used artificial intelligence to analyse large amounts of historical photos from WW2.

Applying artificial intelligence to science education
A new review published in the Journal of Research in Science Teaching highlights the potential of machine learning--a subset of artificial intelligence--in science education.

New roles for clinicians in the age of artificial intelligence
New Roles for Clinicians in the Age of Artificial Intelligence https://doi.org/10.15212/bioi-2020-0014 Announcing a new article publication for BIO Integration journal.

Artificial intelligence aids gene activation discovery
Scientists have long known that human genes are activated through instructions delivered by the precise order of our DNA.

Artificial intelligence recognizes deteriorating photoreceptors
A software based on artificial intelligence (AI), which was developed by researchers at the Eye Clinic of the University Hospital Bonn, Stanford University and University of Utah, enables the precise assessment of the progression of geographic atrophy (GA), a disease of the light sensitive retina caused by age-related macular degeneration (AMD).

Classifying galaxies with artificial intelligence
Astronomers have applied artificial intelligence (AI) to ultra-wide field-of-view images of the distant Universe captured by the Subaru Telescope, and have achieved a very high accuracy for finding and classifying spiral galaxies in those images.

Read More: Artificial Intelligence News and Artificial Intelligence Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.