Nav: Home

A new way to transfer energy between cells

January 17, 2019

Researchers from the Catalonian Institute of Bioengineering (Instituto de Bioingeniería de Cataluña) and the Seville Chemical Research Institute (Instituto de Investigaciones Químicas de Sevilla) have described a new method for the transmission of electrons between proteins that refutes the evidence from experiments until now. This process, involved in the generation of energy in both animal and plant cells, will permit better understanding of the behaviour of proteins in the cells, as well as giving a deeper understanding of the energy dysfunctions that cause diseases.

The production of energy inside living cells is fundamental to correct metabolic function. For that reason, specialised organelles exist that are called chloroplasts in plant cells and mitochondria in animal cells. In these, plants transform the energy of the sun into useful chemical energy - in a process known as photosynthesis - and animals combust food with oxygen from the air to use the energy released during breathing.

Both processes involve the transfer of electrons between specialised proteins. For that, it is necessary to have physical contact between them and the consequent formation of a transitory intermediate state to establish the route of transfer. For years, this has been the central dogma in the study of metabolic energy in biology, until the results of a joint project featuring researchers from the Catalonian Institute of Bioengineering, led by the teacher Pau Gorostiza, and the Seville Chemical Research Institute, led by Irene Díaz Moreno and Miguel Ángel de la Rosa. This project has managed to show that proteins in aqueous solution can transfer electrons large distances, without the need for direct contact between them, which contradicts the experimental evidence available until now.

The finding, published in the review Nature Communications, makes it possible to explain not only the high speed of transfer of electrons, but also the high rates of replacement and efficiency that exist between proteins in chloroplasts and mitochondria. The discovery allows, also, for a deeper understanding of the mechanisms that govern the production of energy in biology and, as a result, in the molecular bases of the energy dysfunctions that cause diseases.
-end-


University of Seville

Related Mitochondria Articles:

Unexpected insights into the dynamic structure of mitochondria
As power plants and energy stores, mitochondria are essential components of almost all cells in plants, fungi and animals.
Mitochondria are the 'canary in the coal mine' for cellular stress
Mitochondria, tiny structures present in most cells, are known for their energy-generating machinery.
Master regulator in mitochondria is critical for muscle function and repair
New study identifies how loss of mitochondrial protein MICU1 disrupts calcium balance and causes muscle atrophy and weakness.
Oxygen deficiency rewires mitochondria
Researchers slow the growth of pancreatic tumor cells.
Self-cannibalizing mitochondria may set the stage for ALS development
Northwestern Medicine scientists have discovered a new phenomenon in the brain that could explain the development of early stages of neurodegeneration that is seen in diseases such as ALS, which affects voluntary muscle movement such as walking and talking.  The discovery was so novel, the scientists needed to coin a new term to describe it: mitoautophagy, a collection of self-destructive mitochondria in diseased upper motor neurons of the brain that begin to disintegrate from within at a very early age.
Uncovering the presynaptic distribution and profile of mitochondria
In a recent study published in the Journal of Neuroscience, scientists from the MPFI and the University of Iowa CCOM have provided unprecedented insight into the presynaptic distribution and profile of mitochondria in the developing and mature calyx of Held.
Temple researchers identify new target regulating mitochondria during stress
Like an emergency response team that is called into action to save lives, stress response proteins in the heart are activated during a heart attack to help prevent cell death.
Runaway mitochondria cause telomere damage in cells
Targeted damage to mitochondria produces a 'Chernobyl effect' inside cells, pelting the nucleus with harmful reactive oxygen species and causing chromosomal damage.
Interplay between mitochondria and nucleus may have implications for new treatment
Mitochondria, the 'batteries' that produce our energy, interact with the cell's nucleus in subtle ways previously unseen in humans, according to research published today in the journal Science.
Dissolving protein traffic jam at the entrance of mitochondria
Researchers from Freiburg discovered a novel mechanism that ensures obstacle-free protein traffic into the powerhouse of the cell.
More Mitochondria News and Mitochondria Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Meditations on Loneliness
Original broadcast date: April 24, 2020. We're a social species now living in isolation. But loneliness was a problem well before this era of social distancing. This hour, TED speakers explore how we can live and make peace with loneliness. Guests on the show include author and illustrator Jonny Sun, psychologist Susan Pinker, architect Grace Kim, and writer Suleika Jaouad.
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.