Nav: Home

Individual lichens can have up to three fungi, study shows

January 17, 2019

EDMONTON--Individual lichens may contain up to three different fungi, according to new research from an international team of researchers. This evidence provides new insight into another recent discovery that showed lichen are made up of more than a single fungus and alga, overturning the prevailing theory of more than 150 years.

The new study was a collaboration between the University of Alberta and Uppsala University in Sweden, and led by Veera Tuovinen, a postdoctoral fellow under the supervision of Toby Spribille, assistant professor in UAlberta's Department of Biological Sciences.

A classic example of symbiosis, lichens have long been known to be the result of a mutually beneficial relationship between fungi and algae. "With the microscopy, we could visualize the mosaic of different organisms within the lichen," said Tuovinen, who completed her PhD at Uppsala University. "We're realizing that interactions are much more complex than previously thought."

The research team used advanced DNA sequencing to examine the genomes of the wolf lichen, a brilliant chartreuse-yellow lichen that grows on trees across western Canada, the United States, and Europe. While the species is well-studied, the researchers found that, almost regardless of where they were sampled, the wolf lichens contained not one or two fungi, but three

"Our findings from two years ago challenged the long-held view that lichens were made up of a single fungus and alga," explained Spribille. "This new research complicates the nature of these relationships even further. For one thing, it means that no two lichens necessarily have the same medley of partners."

"What this means in concrete terms to the overall symbiosis is the big question," added Hanna Johannesson, associate professor at Uppsala University and joint supervisor of the research. "What we are finding now is basically what researchers since the 1800's would have liked to know--who are the core players, what function do they perform, all the cards on the table."

With the roster of players present in wolf lichens becoming clear, Johannesson and Spribille want to figure out how each member benefits in the give-and-take world of symbiosis. The scientists are particularly interested in the ability of fungi and algae to construct architectural structures from microscopic building blocks.

"The fungi and algae that make lichens are doing very interesting things in a confined space," says Spribille. "Knowing that there might not be any one way to pigeonhole the relationship is very helpful moving forward."

The research was conducted with collaborators from Uppsala University and the Swedish University of Agricultural Sciences, as well as Indiana University in the United States. The paper, "Two basidiomycete fungi in the cortex of wolf lichens," was published in Current Biology (doi: 10.1016/j.cub.2018.12.022).
-end-
The University of Alberta Faculty of Science is a research and teaching powerhouse dedicated to shaping the future by pushing the boundaries of knowledge in the classroom, laboratory, and field. Through exceptional teaching, learning, and research experiences, we competitively position our students, staff, and faculty for current and future success.

University of Alberta

Related Algae Articles:

Scientists clarify light harvesting in green algae
A new study by Chinese and Japanese researchers has now characterized the light-harvesting system of Chlamydomonas reinhardtii, a common unicellular green alga.
Algae and bacteria team up to increase hydrogen production
A University of Cordoba research group combined algae and bacteria in order to produce biohydrogen, fuel of the future
Algae as a resource: Chemical tricks from the sea
The chemical process by which bacteria break down algae into an energy source for the marine food chain, has been unknown - until now.
Left out to dry: A more efficient way to harvest algae biomass
Researchers at the University of Tsukuba develop a new system for evaporating the water from algae biomass with reusable nanoporous graphene, which can lead to cheaper, more environmentally friendly biofuels and fine chemicals.
Algae could prevent limb amputation
A new algae-based treatment could reduce the need for amputation in people with critical limb ischemia, according to new research funded by the British Heart Foundation, published today in the journal npj Regenerative Medicine.
Turning algae into fuel
A team of University of Utah chemical engineers have developed a new kind of jet mixer for creating biomass from algae that extracts the lipids from the watery plants with much less energy than the older extraction method.
The algae's third eye
Scientists at the Universities of Würzburg and Bielefeld in Germany have discovered an unusual new light sensor in green algae.
Could algae that are 'poor-providers' help corals come back after bleaching?
How much of a reef's ability to withstand stressful conditions is influenced by the type of symbiotic algae that the corals hosts?
How some algae may survive climate change
Green algae that evolved to tolerate hostile and fluctuating conditions in salt marshes and inland salt flats are expected to survive climate change, thanks to hardy genes they stole from bacteria, according to a Rutgers-led study.
Feeding plants to this algae could fuel your car
The research shows that a freshwater production strain of microalgae, Auxenochlorella protothecoides, is capable of directly degrading and utilizing non-food plant substrates, such as switchgrass, for improved cell growth and lipid productivity, useful for boosting the algae's potential value as a biofuel.
More Algae News and Algae Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab