Nav: Home

Study traces evolution of acoustic communication

January 17, 2020

Imagine taking a hike through a forest or a stroll through a zoo and not a sound fills the air, other than the occasional chirp from a cricket. No birds singing, no tigers roaring, no monkeys chattering, and no human voices, either. Acoustic communication among vertebrate animals is such a familiar experience that it seems impossible to imagine a world shrouded in silence.

But why did the ability to shout, bark, bellow or moo evolve in the first place? In what is likely the first study to trace the evolution of acoustic communication across terrestrial vertebrates, John J. Wiens of the University of Arizona and Zhuo Chen, a visiting scientist from Henan Normal University in Xinxiang, China, traced the evolution of acoustic communication in terrestrial vertebrates back to 350 million years ago.

The authors assembled an evolutionary tree for 1,800 species showing the evolutionary relationships of mammals, birds, lizards and snakes, turtles, crocodilians, and amphibians going back 350 million years. They obtained data from the scientific literature on the absence and presence of acoustic communication within each sampled species and mapped it onto the tree. Applying statistical analytical tools, they tested whether acoustic communication arose independently in different groups and when; whether it is associated with nocturnal activity; and whether it tends to be preserved in a lineage.

The study, published in the open-access journal Nature Communications, revealed that the common ancestor of land-living vertebrates, or tetrapods, did not have the ability to communicate through vocalization - in other words, using their respiratory system to generate sound as opposed to making noise in other ways, such as clapping hands or banging objects together. Instead, acoustic communication evolved separately in mammals, birds, frogs and crocodilians in the last 100-200 million years, depending on the group. The study also found that the origins of communication by sound are strongly associated with a nocturnal lifestyle.

This makes intuitive sense because once light is no longer available to show off visual cues such as color patterns to intimidate a competitor or attract a mate, transmitting signals by sound becomes an advantage.

Extrapolating from the species in the sample, the authors estimate that acoustic communication is present in more than two-thirds of terrestrial vertebrates. While some of the animal groups readily come to mind for their vocal talents - think birds, frogs and mammals - crocodilians as well as a few turtles and tortoises have the ability to vocalize.

Interestingly, the researchers found that even in lineages that switched over to a diurnal (active by day) lifestyle, the ability to communicate via sound tends to be retained.

"There appears to be an advantage to evolving acoustic communication when you're active at night, but no disadvantage when you switch to being active during the day," Wiens said. "We have examples of acoustic communication being retained in groups of frogs and mammals that have become diurnal, even though both frogs and mammals started out being active by night hundreds of millions of years ago."

According to Wiens, birds kept on using acoustic communication even after becoming diurnal for the most part. Interestingly, many birds sing at dawn, as every birdwatcher can attest. Although speculative, it is possible that this "dawn chorus" behavior might be a remnant of the nocturnal ancestry of birds.

In addition, the research showed that acoustic communication appears to be a remarkably stable evolutionary trait. In fact, the authors raise the possibility that once a lineage has acquired the ability to communicate by sound, the tendency to retain that ability might be more stable than other types of signaling, such as conspicuous coloration or enlarged, showy structures.

In another unexpected result, the study revealed that the ability to vocalize does not appear to be the driver of diversification - the rate at which a lineage evolves into new species - it has been believed to be.

To illustrate this finding, Wiens pointed to birds and crocodilians: Both lineages have acoustic communication and go back roughly 100 million years, but while there are close to 10,000 bird species known, the list of crocodilians doesn't go past 25. And while there are about 10,000 known species of lizards and snakes, most go about their lives without uttering a sound, as opposed to about 6,000 mammalian species, 95% of which vocalize.

"If you look at a smaller scale, such as a few million years, and within certain groups like frogs and birds, the idea that acoustic communication drives speciation works out," Wiens said, "but here we look at 350 million years of evolution, and acoustic communication doesn't appear to explain the patterns of species diversity that we see."

The authors point out that their findings likely apply not only to acoustic communication, but also to other evolutionary traits driven by the ecological conditions known to shape the evolution of species. While it had been previously suggested that ecology was important for signal evolution, it was thought to apply mostly to subtle differences among closely related species.

"Here, we show that this idea of ecology shaping signal evolution applies over hundreds of millions of years and to fundamental types of signals, such as being able to communicate acoustically or not," Wiens said.
-end-
The study, "The origins of acoustic communication in vertebrates" is published in Nature Communications and can be accessed online at http://dx.doi.org using the following DOI: 10.1038/s41467-020-14356-3.

University of Arizona

Related Evolution Articles:

How boundaries become bridges in evolution
The mechanisms that make organisms locally fit and those responsible for change are distinct and occur sequentially in evolution.
Genome evolution goes digital
Dr. Alan Herbert from InsideOutBio describes ground-breaking research in a paper published online by Royal Society Open Science.
Paleontology: Experiments in evolution
A new find from Patagonia sheds light on the evolution of large predatory dinosaurs.
A window into evolution
The C4 cycle supercharges photosynthesis and evolved independently more than 62 times.
Is evolution predictable?
An international team of scientists working with Heliconius butterflies at the Smithsonian Tropical Research Institute (STRI) in Panama was faced with a mystery: how do pairs of unrelated butterflies from Peru to Costa Rica evolve nearly the same wing-color patterns over and over again?
Predicting evolution
A new method of 're-barcoding' DNA allows scientists to track rapid evolution in yeast.
Insect evolution: Insect evolution
Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich have shown that the incidence of midge and fly larvae in amber is far higher than previously thought.
Evolution of aesthetic dentistry
One of the main goals of dental treatment is to mimic teeth and design smiles in the most natural and aesthetic manner, based on the individual and specific needs of the patient.
An evolution in the understanding of evolution
In an open-source research paper, a UVA Engineering professor and her former Ph.D. student share a new, more accurate method for modeling evolutionary change.
Chemical evolution -- One-pot wonder
Before life, there was RNA: Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich show how the four different letters of this genetic alphabet could be created from simple precursor molecules on early Earth -- under the same environmental conditions.
More Evolution News and Evolution Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Debbie Millman: Designing Our Lives
From prehistoric cave art to today's social media feeds, to design is to be human. This hour, designer Debbie Millman guides us through a world made and remade–and helps us design our own paths.
Now Playing: Science for the People

#574 State of the Heart
This week we focus on heart disease, heart failure, what blood pressure is and why it's bad when it's high. Host Rachelle Saunders talks with physician, clinical researcher, and writer Haider Warraich about his book "State of the Heart: Exploring the History, Science, and Future of Cardiac Disease" and the ails of our hearts.
Now Playing: Radiolab

Insomnia Line
Coronasomnia is a not-so-surprising side-effect of the global pandemic. More and more of us are having trouble falling asleep. We wanted to find a way to get inside that nighttime world, to see why people are awake and what they are thinking about. So what'd Radiolab decide to do?  Open up the phone lines and talk to you. We created an insomnia hotline and on this week's experimental episode, we stayed up all night, taking hundreds of calls, spilling secrets, and at long last, watching the sunrise peek through.   This episode was produced by Lulu Miller with Rachael Cusick, Tracie Hunte, Tobin Low, Sarah Qari, Molly Webster, Pat Walters, Shima Oliaee, and Jonny Moens. Want more Radiolab in your life? Sign up for our newsletter! We share our latest favorites: articles, tv shows, funny Youtube videos, chocolate chip cookie recipes, and more. Support Radiolab by becoming a member today at Radiolab.org/donate.