Nav: Home

How sensitive can a quantum detector be?

January 17, 2020

Quantum physics is moving out of the laboratory and into our everyday lives. Despite the big headline results about quantum computers solving problems impossible for classical computers, technical challenges are standing in the way of getting quantum physics into the real world. New research published in Nature Communications from teams at Aalto University and Lund University hopes to provide an important tool in this quest.

One of the open questions in quantum research is how heat and thermodynamics coexist with quantum physics. This research field, "quantum thermodynamics", is one of the areas Professor Jukka Pekola, the leader of the QTF Centre of Excellence of the Academy of Finland, has worked on in his career. 'This field has up to now been dominated by theory, and only now important experiments are starting to emerge' says Professor Pekola. His research group has set about creating quantum thermodynamic nano-devices that can solve open questions experimentally.

Quantum states - like the qubits that power quantum computers - interact with their surrounding world, and these interactions are what quantum thermodynamics deals with. Measuring these systems requires detecting energy changes so exceptionally small they are hard to pick out from background fluctuations, like using only a thermometer to try and work out if someone has blown out a candle in the room you're in. Another problem is that quantum states can change when you measure them, simply because you've measured them. This would be like putting a thermometer in a cup of cold water making the water start to boil. The team had to make a thermometer able to measure very small changes without interfering with any of the quantum states they plan to measure.

Doctoral student Bayan Karimi works in QTF and Marie Curie training network QuESTech. Her device is a calorimeter, which measures the heat in a system. It uses a strip of copper about one thousand times thinner than a human hair. 'Our detector absorbs radiation from the quantum states. It is expected to determine how much energy they have and how they interact with their surroundings. There is a theoretical limit to how accurate a calorimeter can be, and our device is now reaching that limit', says Karimi.
-end-
The experimental part of the work has been performed at OtaNano national research infrastructure for micro, nano and quantum technologies in Finland. Besides Pekola and Karimi, the team consists of Dr Fredrik Brange and professor Peter Samuelsson from Lund University. The research is published in Nature Communications on 17 January and the DOI is 10.1038/s41467-019-14247-2

Aalto University

Related Quantum Physics Articles:

Attosecond physics: Quantum brakes in molecules
Physicists have measured the flight times of electrons emitted from a specific atom in a molecule upon excitation with laser light.
Quantum physics: On the way to quantum networks
Physicists at Ludwig-Maximilians-Universitaet (LMU) in Munich, together with colleagues at Saarland University, have successfully demonstrated the transport of an entangled state between an atom and a photon via an optic fiber over a distance of up to 20 km -- thus setting a new record.
Quantum physics: Controlled experiment observes self-organized criticality
Researchers from Cologne, Heidelberg, Strasbourg and California have observed important characteristics of complex systems in a lab experiment.
A platform for stable quantum computing, a playground for exotic physics
Harvard University researchers have demonstrated the first material that can have both strongly correlated electron interactions and topological properties, which not only paves the way for more stable quantum computing but also an entirely new platform to explore the wild world of exotic physics.
A new quantum data classification protocol brings us nearer to a future 'quantum internet'
A new protocol created by researchers at the Universitat Autònoma de Barcelona sorts and classifies quantum data by the state in which they were prepared, with more efficiency than the equivalent classical algorithm.
Quantum physics: Ménage à trois photon-style
When two photons become entangled, the quantum state of the first will correlate perfectly with the quantum state of the second.
Quantum physics -- Simulating fundamental interactions with ultracold atoms
An international team of physicists succeeded in precisely engineering key ingredients to simulate a specific lattice gauge theory using ultracold atoms in optical lattices.
A key piece to understanding how quantum gravity affects low-energy physics
In a new study, led by researchers from SISSA (Scuola Internazionale Superiore di Studi Avanzati), the Complutense University of Madrid and the University of Waterloo, a solid theoretical framework is provided to discuss modifications to the Unruh effect caused by the microstructure of space-time.
Helping physics teachers who don't know physics
A shortage of high school physics teachers has led to teachers with little-to-no training taking over physics classrooms, reports show.
Quantum physics and origami for the ultimate get-well card
The bizarre optical properties of tiny metal particles -- smaller than light waves -- can be captured on paper to detect even a single target molecule in a test sample.
More Quantum Physics News and Quantum Physics Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Biology Of Sex
Original broadcast date: May 8, 2020. Many of us were taught biological sex is a question of female or male, XX or XY ... but it's far more complicated. This hour, TED speakers explore what determines our sex. Guests on the show include artist Emily Quinn, journalist Molly Webster, neuroscientist Lisa Mosconi, and structural biologist Karissa Sanbonmatsu.
Now Playing: Science for the People

#569 Facing Fear
What do you fear? I mean really fear? Well, ok, maybe right now that's tough. We're living in a new age and definition of fear. But what do we do about it? Eva Holland has faced her fears, including trauma and phobia. She lived to tell the tale and write a book: "Nerve: Adventures in the Science of Fear".
Now Playing: Radiolab

The Wubi Effect
When we think of China today, we think of a technological superpower. From Huweai and 5G to TikTok and viral social media, China is stride for stride with the United States in the world of computing. However, China's technological renaissance almost didn't happen. And for one very basic reason: The Chinese language, with its 70,000 plus characters, couldn't fit on a keyboard.  Today, we tell the story of Professor Wang Yongmin, a hard headed computer programmer who solved this puzzle and laid the foundation for the China we know today. This episode was reported and produced by Simon Adler with reporting assistance from Yang Yang. Special thanks to Martin Howard. You can view his renowned collection of typewriters at: antiquetypewriters.com Support Radiolab today at Radiolab.org/donate.