Chemists allow boron atoms to migrate

January 17, 2020

Organic molecules with atoms of the semi-metal boron are among the most important building blocks for synthesis products that are needed to produce drugs and agricultural chemicals. However, during the usual chemical reactions used in industry, the valuable boron unit, which can replace another atom in a molecule, is often lost. Chemists at the University of Münster have now succeeded in significantly expanding the range of applications of commercially and industrially used boron compounds, so-called allylboronic esters. The study has been published in the scientific journal "Chem".

Since so-called boronic acid derivatives are very versatile and reliably applicable in their variants, chemists often use them to build up important carbon-carbon couplings (C-C couplings). The most important process using boronic acid derivatives is the Nobel Prize-winning Suzuki-Miyaura coupling. Also widely used in synthesis are the so-called allylboronic esters, which also belong to this class of boron compounds.

In their current study, the chemists headed by Prof. Armido Studer of the Organic Chemical Institute at Münster University are now presenting C-C couplings in which the boron unit from the starting material is retained in the product. The scientists use methods of so-called radical chemistry for this purpose. The principle works like this: The boron unit "migrates" from one carbon atom to the neighbouring atom, thus enabling a second C-C coupling.

Using this method, the chemists can gradually incorporate individual building blocks of molecules at different points in the basic structure. "Since the boron unit remains in the product molecule, i.e. is 'preserved', it can be replaced by another molecular unit, which can be done using the entire spectrum of industrial methods. The commercially available allylboronic esters thus appear in a new guise," says Armido Studer, the lead author of the study. The new method may in future be relevant for the production of drugs. In the future, the new method may be relevant for the production of pharmaceuticals, among other things.
-end-
Original publication:

K. Jana et al. (2020): Radical 1,3-Difunctionalization of Allylboronic Esters with Concomitant 1,2-Boron Shift. Chem; DOI: 10.1016/j.chempr.2019.12.022

University of Münster

Related Molecules Articles from Brightsurf:

Finally, a way to see molecules 'wobble'
Researchers at the University of Rochester and the Fresnel Institute in France have found a way to visualize those molecules in even greater detail, showing their position and orientation in 3D, and even how they wobble and oscillate.

Water molecules are gold for nanocatalysis
Nanocatalysts made of gold nanoparticles dispersed on metal oxides are very promising for the industrial, selective oxidation of compounds, including alcohols, into valuable chemicals.

Water molecules dance in three
An international team of scientists has been able to shed new light on the properties of water at the molecular level.

How molecules self-assemble into superstructures
Most technical functional units are built bit by bit according to a well-designed construction plan.

Breaking down stubborn molecules
Seawater is more than just saltwater. The ocean is a veritable soup of chemicals.

Shaping the rings of molecules
Canadian chemists discover a natural process to control the shape of 'macrocycles,' molecules of large rings of atoms, for use in pharmaceuticals and electronics.

The mysterious movement of water molecules
Water is all around us and essential for life. Nevertheless, research into its behaviour at the atomic level -- above all how it interacts with surfaces -- is thin on the ground.

Spectroscopy: A fine sense for molecules
Scientists at the Laboratory for Attosecond Physics have developed a unique laser technology for the analysis of the molecular composition of biological samples.

Looking at the good vibes of molecules
Label-free dynamic detection of biomolecules is a major challenge in live-cell microscopy.

Colliding molecules and antiparticles
A study by Marcos Barp and Felipe Arretche from Brazil published in EPJ D shows a model of the interaction between positrons and simple molecules that is in good agreement with experimental results.

Read More: Molecules News and Molecules Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.