Nav: Home

Ingestible medical devices can be broken down with light

January 17, 2020

CAMBRIDGE, MA -- A variety of medical devices can be inserted into the gastrointestinal tract to treat, diagnose, or monitor GI disorders. Many of these have to be removed by endoscopic surgery once their job is done. However, MIT engineers have now come up with a way to trigger such devices to break down inside the body when they are exposed to light from an ingestible LED.

The new approach is based on a light-sensitive hydrogel that the researchers designed. Incorporating this material into medical devices could avoid many endoscopic procedures and would give doctors a faster and easier way to remove devices when they are no longer needed or are not functioning properly, the researchers say.

"We are developing a set of systems that can reside in the gastrointestinal tract, and as part of that, we're looking to develop different ways in which we can trigger the disassembly of devices in the GI tract without the requirement for a major procedure," says Giovanni Traverso, an assistant professor of mechanical engineering, a gastroenterologist at Brigham and Women's Hospital, and the senior author of the study.

In a study in pigs, the researchers showed that devices made with this light-sensitive hydrogel can be triggered to break down after being exposed to blue or ultraviolet light from a small LED.

Ritu Raman, a postdoc at MIT's Koch Institute for Integrative Cancer Research, is the lead author of the paper, which appears today in Science Advances. Other authors of the paper are former technical associates Tiffany Hua, Jianlin Zhou, Tina Esfandiary, and Vance Soares; technical associates Declan Gwynne, Joy Collins, and Siddartha Tamang; graduate student Simo Pajovic; Division of Comparative Medicine veterinarian Alison Hayward; and David H. Koch Institute Professor Robert Langer.

Controlled breakdown

Over the past several years, Traverso and Langer have developed many ingestible devices designed to remain in the GI tract for extended periods of time. They have also worked on a variety of strategies to control the breakdown of such devices, including methods based on changes in pH or temperature, or exposure to certain chemicals.

"Given our interests in developing systems that can reside for prolonged periods in the gastrointestinal tract, we continue to investigate a range of approaches to facilitate the removal of these systems in the setting of adverse reaction or when they are no longer needed," Traverso says. "We're really looking at different triggers and how they perform, and whether we can apply them to different settings."

In this study, the researchers explored a light-based trigger, which they believed could offer some advantages over their earlier approaches. One potential advantage is that light can act at a distance and doesn't need to come into direct contact with the material being broken down. Also, light normally does not penetrate the GI tract, so there is no chance of accidental triggering.

To create the new material, Raman designed a light-sensitive hydrogel based on a material developed in the lab of Kristi Anseth, a former Langer lab postdoc who is now a professor of chemical and biological engineering at the University of Colorado at Boulder. This polymer gel includes a chemical bond that is broken when exposed to a wavelength of light between 405 and 365 nanometers (blue to ultraviolet).

Raman decided that instead of making a material composed exclusively of that light-sensitive polymer, she would use it to link together stronger components such as polyacrylamide. This makes the overall material more durable but still allows it to break apart or weaken when exposed to the right wavelength of light. She also constructed the material as a "double network," in which one polymer network surrounds another.

"You're forming one polymer network and then forming another polymer network around it, so it's really entangled. That makes it very tough and stretchy," Raman says.

The material's properties can be tuned by varying the composition of the gel. When the light-sensitive linker makes up a higher percentage of the material, it breaks down faster in response to light but is also mechanically weaker. The researchers can also control how long it takes to break down the material by using different wavelengths of light. Blue light works more slowly but poses less risk to cells that are sensitive to damage from ultraviolet light.

Deflated by light

The gel and its breakdown products are biocompatible, and the gel can be easily molded into a variety of shapes. In this study, the researchers used it to demonstrate two possible applications: a seal for a bariatric balloon and an esophageal stent. Standard bariatric balloons, which are sometimes used to help treat obesity, are inflated in a patient's stomach and filled with saline. After about six months, the balloon is removed by endoscopic surgery.

In contrast, the bariatric balloon that the MIT team designed can be deflated by exposing the seal to a tiny LED light, which would in principle be swallowed and then pass out of the body. Their balloon is made of latex and filled with sodium polyacrylate, which absorbs water. In this study, the researchers tested the balloons in pigs and found that the balloons swelled up as soon as they were placed in the stomach. When a small, ingestible LED emitting blue light was placed in the stomach for about six hours, the balloons slowly deflated. With a higher-power light, the material broke down within 30 minutes.

The researchers also molded the light-sensitive gel into an esophageal stent. Such stents are sometimes used to help treat esophageal cancer or other disorders that cause a narrowing of the esophagus. A light-triggerable version could be broken down and passed through the digestive tract when no longer needed.

In addition to those two applications, this approach could be used to create other kinds of degradable devices, such as vehicles for delivering drugs to the gastrointestinal tract, according to the researchers.

"This study is a proof of concept that we can create this kind of material, and now we're thinking about what are the best applications for it," Traverso says.
-end-
The research was funded by the National Institutes of Health, the Bill & Melinda Gates Foundation, the Koch Institute Support (core) Grant from the National Cancer Institute, and an AAAS L'Oréal USA for Women in Science Fellowship.

Massachusetts Institute of Technology

Related Medical Devices Articles:

Tiny devices promise new horizon for security screening and medical imaging
Miniature devices that could be developed into safe, high-resolution imaging technology, with uses such as helping doctors identify potentially deadly cancers and treat them early, have been created in research involving the University of Strathclyde.
Graphite nanoplatelets on medical devices kill bacteria and prevent infections
Graphite nanoplatelets integrated into plastic medical surfaces can prevent infections, killing 99.99 per cent of bacteria which try to attach -- a cheap and viable potential solution to a problem which affects millions, costs huge amounts of time and money, and accelerates antibiotic resistance.
Predicting the degradation behavior of advanced medical devices
Polymer materials play a vital role in today's medicine. While many applications demand for long-lasting devices, others benefit from materials that disintegrate once their job is done.
Ingestible medical devices can be broken down with light
MIT engineers have developed a light-sensitive material that allows gastrointestinal devices to be triggered to break down inside the body when they are exposed to light from an ingestible LED.
Fighting bacterial infection with drug-eluting medical devices
Medical practitioners routinely outfit patients with devices ranging from cardiovascular stents, pacemakers, catheters, and therapeutic lenses to orthopedic, breast, dental, and cochlear implants and prostheses.
Concerns over regulation of oral powders or gels sold as medical devices in Europe
Oral powders or gels, sold as medical devices in the European Union (EU), aren't regulated to the same safety standards as those applied to medicines, reveals research published online in the Archives of Disease in Childhood.
Cotton-based hybrid biofuel cell could power implantable medical devices
A glucose-powered biofuel cell that uses electrodes made from cotton fiber could someday help power implantable medical devices such as pacemakers and sensors.
How unsecured medical record systems and medical devices put patient lives at risk
A team of physicians and computer scientists at the University of California has shown it is easy to modify medical test results remotely by attacking the connection between hospital laboratory devices and medical record systems.
Wearable devices: Useful medical insights or just more data?
Despite the popularity of wearable devices to track and measure health and sports performance, a new review highlights how surprisingly little we know we know about how well these sensors and machines work -- let alone whether they deliver useful information.
Hospital superbug uses tiny sticky fingers to infect medical tools and devices
The antibiotic-resistant Acinetobacter baumannii bacterium is one of the most globally harmful bacteria that causes nosocomial infections.
More Medical Devices News and Medical Devices Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Making Amends
What makes a true apology? What does it mean to make amends for past mistakes? This hour, TED speakers explore how repairing the wrongs of the past is the first step toward healing for the future. Guests include historian and preservationist Brent Leggs, law professor Martha Minow, librarian Dawn Wacek, and playwright V (formerly Eve Ensler).
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.