Tiny RNA molecules fine-tune the brain's synapses

January 18, 2006

Non-coding regions of the genome - those that don't code for proteins - are now known to include important elements that regulate gene activity. Among those elements are microRNAs, tiny, recently discovered RNA molecules that suppress gene expression. Increasing evidence indicates a role for microRNAs in the developing nervous system, and researchers from Children's Hospital Boston now demonstrate that one microRNA affects the development of synapses - the points of communication between brain cells that underlie learning and memory. The findings appear in the January 19th issue of Nature.

"This paper provides the first evidence that microRNAs have a role at the synapse, allowing for a new level of regulation of gene expression," says senior author Michael Greenberg, PhD, Director of Neuroscience at Children's Hospital Boston. "What we've found is a new mechanism for regulating brain function."

The brain's ability to form and refine synapses allows organisms to learn and respond to their environment, strengthening important synaptic connections, forming new ones, and allowing unimportant ones to weaken. Experiments in Greenberg's lab, done in rats, showed that a microRNA called miR-134 regulates the size of dendritic spines, the protrusions from a neuron's dendrites where synapses form. When neurons were exposed to miR-134, spine volume significantly decreased, weakening the synapse. When miR-134 was inhibited, spines increased in size, strengthening the synapse.

Further experiments showed that miR-134 acts by inhibiting expression of a gene called Limk1, which causes dendritic spines to grow. When neurons were exposed to a growth factor known as brain-derived neurotrophic factor (BDNF), this inhibition was overcome and Limk1 became active again, enhancing spine growth.

Greenberg believes that miR-134 - and other microRNAs his lab is studying - may play a role in fine-tuning cognitive function by selectively controlling synapse development in response to environmental stimuli. "A single neuron can form a thousand synapses," says Greenberg, also a professor of neurology and neuroscience at Harvard Medical School. "If you could selectively control what's happening at one synapse without affecting another, you greatly increase the information storage and computational capacity of the brain."

Greenberg also speculates that miR-134 may be relevant to disorders such as mental retardation and autism. He notes that loss of Limk1 due to a chromosomal deletion is associated with Williams syndrome, and that the BDNF pathway that activates Limk1 includes proteins that are disabled in tuberous sclerosis and Fragile X syndrome. All three genetic disorders can cause cognitive impairment and autistic-like behaviors.
-end-
The research was supported by grants from the National Insitute of Neurological Disorders and Stroke, the National Institute of Child Health and Human Development, the Human Frontier Science Program, and the Charles Hood Foundation.

Children's Hospital Boston is home to the world's largest research enterprise based at a pediatric medical center, where its discoveries have benefited both children and adults since 1869. More than 500 scientists, including eight members of the National Academy of Sciences, nine members of the Institute of Medicine and 10 members of the Howard Hughes Medical Institute comprise Children's research community. Founded as a 20-bed hospital for children, Children's Hospital Boston today is a 347-bed comprehensive center for pediatric and adolescent health care grounded in the values of excellence in patient care and sensitivity to the complex needs and diversity of children and families. Children's also is the primary pediatric teaching affiliate of Harvard Medical School. For more information about the hospital and its research visit: http://www.childrenshospital.org/research/.

Boston Children's Hospital

Related Neurons Articles from Brightsurf:

Paying attention to the neurons behind our alertness
The neurons of layer 6 - the deepest layer of the cortex - were examined by researchers from the Okinawa Institute of Science and Technology Graduate University to uncover how they react to sensory stimulation in different behavioral states.

Trying to listen to the signal from neurons
Toyohashi University of Technology has developed a coaxial cable-inspired needle-electrode.

A mechanical way to stimulate neurons
Magnetic nanodiscs can be activated by an external magnetic field, providing a research tool for studying neural responses.

Extraordinary regeneration of neurons in zebrafish
Biologists from the University of Bayreuth have discovered a uniquely rapid form of regeneration in injured neurons and their function in the central nervous system of zebrafish.

Dopamine neurons mull over your options
Researchers at the University of Tsukuba have found that dopamine neurons in the brain can represent the decision-making process when making economic choices.

Neurons thrive even when malnourished
When animal, insect or human embryos grow in a malnourished environment, their developing nervous systems get first pick of any available nutrients so that new neurons can be made.

The first 3D map of the heart's neurons
An interdisciplinary research team establishes a new technological pipeline to build a 3D map of the neurons in the heart, revealing foundational insight into their role in heart attacks and other cardiac conditions.

Mapping the neurons of the rat heart in 3D
A team of researchers has developed a virtual 3D heart, digitally showcasing the heart's unique network of neurons for the first time.

How to put neurons into cages
Football-shaped microscale cages have been created using special laser technologies.

A molecule that directs neurons
A research team coordinated by the University of Trento studied a mass of brain cells, the habenula, linked to disorders like autism, schizophrenia and depression.

Read More: Neurons News and Neurons Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.