Solving the mystery of an old diabetes drug that may reduce cancer risk

January 18, 2012

In 2005, news first broke that researchers in Scotland found unexpectedly low rates of cancer among diabetics taking metformin, a drug commonly prescribed to patients with Type II diabetes. Many follow-up studies reported similar findings, some suggesting as much as a 50-per-cent reduction in risk.

How could this anti-diabetic drug reduce the risk of developing cancer and what were the mechanisms involved?

In a paper published today in the journal Cancer Prevention Research, researchers from McGill University and the University of Montreal reported an unexpected finding: they learned that exposure to metformin reduces the cellular mutation rate and the accumulation of DNA damage. It is well known that such mutations are directly involved in carcinogenesis, but lowering cancer risk by inhibiting the mutation rate has never been shown to be feasible.

"It is remarkable that metformin, an inexpensive, off-patent, safe and widely used drug, has several biological actions that may result in reduced cancer risk - these latest findings suggest that it reduces mutation rate in somatic cells, providing an additional mechanism by which it could prevent cancer, explained Dr. Michael Pollak, professor in McGill's Departments of Medicine and Oncology, researcher at the Lady Davis Institute for Medical Research at the Jewish General Hospital and the study's director.

The study, carried out in collaboration with the laboratory of Dr. Gerardo Ferbeyre at Université de Montréal's Department of Biochemistry, suggests that metformin reduces DNA damage by reducing levels of reactive oxygen species (ROS). ROS are known to be DNA-damaging agents produced as by-products when cells generate energy from nutrients. This action appears to take place in mitochondria, the cellular organelles that produce energy in cells by "burning" nutrients. Past studies have identified the mitochondria as a site of action for metformin related to its anti-diabetic function, but those studies had not considered that the drug also acted here to reduce ROS production, thereby reducing the rate at which DNA damage accumulates. "We found that metformin did not act as a classic antioxidant," said Ferbeyre. "The drug seems to selectively prevent ROS production from altered mitochondria such as those found in cells with oncogenic mutations."

"This study opens an exciting new direction in cancer-prevention research," said Pollak. "This doesn't imply, however, that metformin is now ready to be widely used for cancer prevention. We do not yet know if the drug accumulates to sufficient concentrations in human tissues at risk for cancer, such as breast or colon, when taken at the usual doses used for diabetes treatment, nor do we know if the findings from the original studies showing reduced cancer risk, which were carried out in diabetics, also apply to people without diabetes. But the possibility of protecting DNA from oxidative damage by the use of a well-tolerated drug was not expected, and this topic now needs further study at many levels."
-end-


McGill University

Related Diabetes Articles from Brightsurf:

New diabetes medication reduced heart event risk in those with diabetes and kidney disease
Sotagliflozin - a type of medication known as an SGLT2 inhibitor primarily prescribed for Type 2 diabetes - reduces the risk of adverse cardiovascular events for patients with diabetes and kidney disease.

Diabetes drug boosts survival in patients with type 2 diabetes and COVID-19 pneumonia
Sitagliptin, a drug to lower blood sugar in type 2 diabetes, also improves survival in diabetic patients hospitalized with COVID-19, suggests a multicenter observational study in Italy.

Making sense of diabetes
Throughout her 38-year nursing career, Laurel Despins has progressed from a bedside nurse to a clinical nurse specialist and has worked in medical, surgical and cardiac intensive care units.

Helping teens with type 1 diabetes improve diabetes control with MyDiaText
Adolescence is a difficult period of development, made more complex for those with Type 1 diabetes mellitus (T1DM).

Diabetes-in-a-dish model uncovers new insights into the cause of type 2 diabetes
Researchers have developed a novel 'disease-in-a-dish' model to study the basic molecular factors that lead to the development of type 2 diabetes, uncovering the potential existence of major signaling defects both inside and outside of the classical insulin signaling cascade, and providing new perspectives on the mechanisms behind insulin resistance in type 2 diabetes and possibly opportunities for the development of novel therapeutics for the disease.

Tele-diabetes to manage new-onset diabetes during COVID-19 pandemic
Two new case studies highlight the use of tele-diabetes to manage new-onset type 1 diabetes in an adult and an infant during the COVID-19 pandemic.

Genetic profile may predict type 2 diabetes risk among women with gestational diabetes
Women who go on to develop type 2 diabetes after having gestational, or pregnancy-related, diabetes are more likely to have particular genetic profiles, suggests an analysis by researchers at the National Institutes of Health and other institutions.

Maternal gestational diabetes linked to diabetes in children
Children and youth of mothers who had gestational diabetes during pregnancy are at increased risk of diabetes themselves, according to new research published in CMAJ (Canadian Medical Association Journal).

Two diabetes medications don't slow progression of type 2 diabetes in youth
In youth with impaired glucose tolerance or recent-onset type 2 diabetes, neither initial treatment with long-acting insulin followed by the drug metformin, nor metformin alone preserved the body's ability to make insulin, according to results published online June 25 in Diabetes Care.

People with diabetes visit the dentist less frequently despite link between diabetes, oral health
Adults with diabetes are less likely to visit the dentist than people with prediabetes or without diabetes, finds a new study led by researchers at NYU Rory Meyers College of Nursing and East Carolina University's Brody School of Medicine.

Read More: Diabetes News and Diabetes Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.