Nav: Home

Mitochondrial DNA shows past climate change effects on gulls

January 18, 2017

To understand the present and future, we have to start with the past. A new study in The Auk: Ornithological Advances uses the mitochondrial DNA of Heermann's Gulls to draw conclusions about how their population has expanded in the Gulf of California since the time of the glaciers--and, by extension, how human-caused climate change may affect them in the future.

Enrico Ruiz of the University of California, Merced, and his colleagues sequenced the mitochondrial DNA of 286 Heermann's Gulls breeding in the Gulf of California in 2011 and 2012. Using a combination of statistical approaches, the researchers found that the pattern of genetic diversity among the birds suggests a period of population growth from roughly 100,000 years ago to 45,000 years ago, coinciding with the last glacial retreat in the region.

Ruiz and his colleagues believe that the gulls' population increase was the result of large-scale climatic shifts, which would have allowed the marine species on which the gulls rely for food to expand their ranges. Though this is one of the first studies to examine how regional climate change affected vertebrates such as seabirds, past analyses have found evidence of increases in fish, mollusk, and crustacean populations during the same period.

The Heermann's Gull population in the region has remained relatively stable since the end of this period of expansion, but Ruiz and his colleagues are concerned that this may change. "During the last 16 years, the warm oceanographic anomalies in the Gulf of California have increased in frequency from an average of one every six or seven years to six anomalies in the last 16 years," says Ruiz. "The consensus among researchers now is that there is a general productivity decline across the trophic web, including the availability of the small pelagic fish on which the seabirds feed." By learning how the ancient climates affected modern species' population sizes and distribution in the past, he hopes we may better understand present changes in their distribution and abundance.
-end-
"Demographic history of Heermann's Gull (Larus heermanni) from late Quaternary to present: Effects of past climate change in the Gulf of California" will be available January 18, 2017, at http://americanornithologypubs.org/doi/full/10.1642/AUK-16-57.1 (issue URL http://americanornithologypubs.org/toc/tauk/134/2).

About the journal: The Auk: Ornithological Advances is a peer-reviewed, international journal of ornithology that began in 1884 as the official publication of the American Ornithologists' Union, which merged with the Cooper Ornithological Society in 2016 to become the American Ornithological Society. In 2009, The Auk was honored as one of the 100 most influential journals of biology and medicine over the past 100 years.

American Ornithological Society Publications Office

Related Mitochondrial Dna Articles:

Why the lettuce mitochondrial genome is like a chopped salad
The genomes of mitochondria are usually depicted as rings or circles.
Researchers can finally modify plant mitochondrial DNA
Researchers in Japan have edited plant mitochondrial DNA for the first time, which could lead to a more secure food supply.
A link between mitochondrial damage and osteoporosis
In healthy people, a tightly controlled process balances out the activity of osteoblasts, which build bone, and osteoclasts, which break it down.
Neurodevelopmental disorders may be rooted in genetics and mitochondrial deficits
A new study published in Neuron provides the first evidence showing that individual nerve cells fail to make the right number of connections.
How a mitochondrial enzyme can trigger cell death
Cytochrome c is a small enzyme that plays an important role in the production of energy by mitochondria.
Better together: Mitochondrial fusion supports cell division
New research from Washington University in St. Louis shows that when cells divide rapidly, their mitochondria are fused together.
An existing drug may have therapeutic potential in mitochondrial disease
New preclinical findings from extensive cell and animal studies suggest that a drug already used for a rare kidney disease could benefit patients with some mitochondrial disorders -- complex conditions with severe energy deficiency for which no proven effective treatments exist.
Ciprofloxacin has dramatic effects on the mitochondrial genome
A study carried out at the University of Eastern Finland and published in Nucleic Acids Research investigated the effect of ciprofloxacin on mitochondria, the important cell organelles in our body that produce the energy for cellular function.
Researchers identify a new cause of childhood mitochondrial disease
A rapid genetic test developed by Newcastle researchers has identified the first four patients with inherited mutations in a new disease gene, a building block of complex I called NDUFA6.
Changes in mitochondrial DNA control how nuclear DNA mutations are expressed in cardiomyopathy
Differences in the DNA within the mitochondria, the energy-producing structures within cells, can determine the severity and progression of heart disease caused by a nuclear DNA mutation.
More Mitochondrial Dna News and Mitochondrial Dna Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.