Nav: Home

Structure of atypical cancer protein paves way for drug development

January 18, 2017

A team of researchers from Case Western Reserve University School of Medicine has helped uncover the elusive structure of a cancer cell receptor protein that can be leveraged to fight disease progression. Previous studies have showed blocking the receptor can slow tumor growth and metastasis in certain cases. However, the development of drugs (inhibitors) has been slowed by an absence of structural information on this highly unstable membrane protein. Armed with the new study, drug developers can now design molecules that nestle into the receptor's binding sites to modulate its function or outcompete native ligands.

The research team, including Mark Chance PhD, professor and vice dean for research at Case Western Reserve School of Medicine, identified for the first time regions where the receptor interacts with other molecules, including investigational drugs. The findings, published in Nature Communications, provide the first complete structural model for an important class of proteins that sit in the membranes of several types of normal and cancer cells, and are critical mediators of cell-cell communication.

Chance and the team, including investigators at Case Western Reserve University and the University of San Diego, used multiple biochemical and bioinformatics approaches, including novel mass spectrometry techniques, to produce models of "atypical chemokine receptor 3," or ACKR3, alone and in complex with a drug currently in phase 2 trials for treatment of glioblastoma tumors. The researchers also created models of ACKR3 interacting with chemokines, small molecules naturally circulating in the body that control cell movement. The feat required mapping ACKR3 in multiple states, as it dramatically changes shape when bound by these molecular triggers of cell movement.

Said Chance, "ACKR3 is considered an important anti-cancer and immune system target for drug development. ACKR3 can signal cells to grow and move accelerating their cancer potential. By mapping the protein's interactions with known activators as well as drugs that can manipulate function, we can understand its mechanism of action including where the drugs bind and what changes occur in ACKR3 as a result of these interactions."

Chance and his research team used over 100 molecular probes to cover all the static and dynamic regions of ACKR3. The probes helped the team visualize ACKR3 in the laboratory and piece together its structure. "Drug binding results in a conformational change in ACKR3 similar to those of other proteins in its class," said Chance. "We were surprised that the mechanism is so consistent across many types of receptors."

The state-of-the-art techniques used by the team are helping to map other types of cancer-related cell proteins to guide drug development. Information from the study may also allow refinement of compounds currently under development to treat a multitude of cancers.
-end-
Funding for the study was partially provided by National Institutes of Health grants U01 GM094612, U54 GM094618, R01 GM071872, R01 AI118985, R01 AI37113, R21 AI121918, R21 AI122211, GM117424 and P30 EB009998. Study co-author M.G. is supported by a Robertson Foundation/Cancer Research Institute Irvington Fellowship.

For more information about Case Western Reserve University School of Medicine, please visit: http://case.edu/medicine.

Case Western Reserve University

Related Cancer Articles:

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.
Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.
Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.
More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.
New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.
More Cancer News and Cancer Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...