Structure of atypical cancer protein paves way for drug development

January 18, 2017

A team of researchers from Case Western Reserve University School of Medicine has helped uncover the elusive structure of a cancer cell receptor protein that can be leveraged to fight disease progression. Previous studies have showed blocking the receptor can slow tumor growth and metastasis in certain cases. However, the development of drugs (inhibitors) has been slowed by an absence of structural information on this highly unstable membrane protein. Armed with the new study, drug developers can now design molecules that nestle into the receptor's binding sites to modulate its function or outcompete native ligands.

The research team, including Mark Chance PhD, professor and vice dean for research at Case Western Reserve School of Medicine, identified for the first time regions where the receptor interacts with other molecules, including investigational drugs. The findings, published in Nature Communications, provide the first complete structural model for an important class of proteins that sit in the membranes of several types of normal and cancer cells, and are critical mediators of cell-cell communication.

Chance and the team, including investigators at Case Western Reserve University and the University of San Diego, used multiple biochemical and bioinformatics approaches, including novel mass spectrometry techniques, to produce models of "atypical chemokine receptor 3," or ACKR3, alone and in complex with a drug currently in phase 2 trials for treatment of glioblastoma tumors. The researchers also created models of ACKR3 interacting with chemokines, small molecules naturally circulating in the body that control cell movement. The feat required mapping ACKR3 in multiple states, as it dramatically changes shape when bound by these molecular triggers of cell movement.

Said Chance, "ACKR3 is considered an important anti-cancer and immune system target for drug development. ACKR3 can signal cells to grow and move accelerating their cancer potential. By mapping the protein's interactions with known activators as well as drugs that can manipulate function, we can understand its mechanism of action including where the drugs bind and what changes occur in ACKR3 as a result of these interactions."

Chance and his research team used over 100 molecular probes to cover all the static and dynamic regions of ACKR3. The probes helped the team visualize ACKR3 in the laboratory and piece together its structure. "Drug binding results in a conformational change in ACKR3 similar to those of other proteins in its class," said Chance. "We were surprised that the mechanism is so consistent across many types of receptors."

The state-of-the-art techniques used by the team are helping to map other types of cancer-related cell proteins to guide drug development. Information from the study may also allow refinement of compounds currently under development to treat a multitude of cancers.
-end-
Funding for the study was partially provided by National Institutes of Health grants U01 GM094612, U54 GM094618, R01 GM071872, R01 AI118985, R01 AI37113, R21 AI121918, R21 AI122211, GM117424 and P30 EB009998. Study co-author M.G. is supported by a Robertson Foundation/Cancer Research Institute Irvington Fellowship.

For more information about Case Western Reserve University School of Medicine, please visit: http://case.edu/medicine.

Case Western Reserve University

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.