Nav: Home

Contracts signed for ELT mirrors and sensors

January 18, 2017

The construction of the 39-metre ELT, the largest optical/near-infrared telescope in the world, is moving forward. The giant telescope employs a complex five-mirror optical system that has never been used before and requires optical and mechanical elements that stretch modern technology to its limits.

Contracts for the manufacture of several of these challenging telescope components have just been signed by ESO's Director General, Tim de Zeeuw, and representatives of three industrial contractors in the ESO Member States.

Introducing the ceremony, Tim de Zeeuw said: "It gives me great pleasure to sign these four contracts today, each for advanced components at the heart of the ELT's revolutionary optical system. They underline how the construction of this giant telescope is moving ahead at full speed -- on target for first light in 2024. We at ESO look forward to working with SCHOTT, SENER and FAMES -- three leading industrial partners from our Member States."

The first two contracts were signed with SCHOTT by Christoph Fark, Executive Vice President. They cover the casting of the ELT's largest single mirrors -- the 4.2-metre secondary and 3.8-metre tertiary mirror -- from SCHOTT's low-expansion ceramic material Zerodur© [1].

Hanging upside-down at the top of the telescope structure, high above the 39-metre primary mirror, the secondary mirror will be largest ever employed on a telescope and the largest convex mirror ever produced [2]. The concave tertiary mirror is also an unusual feature of the telescope [3]. The ELT secondary and tertiary mirrors will rival in size the primary mirrors of many modern-day research telescopes and weigh 3.5 and 3.2 tonnes respectively [4]. The secondary mirror is to be delivered by the end of 2018 and the tertiary by July 2019.

The third contract was signed with the SENER Group by Diego Rodríguez, Space Department Director. It covers the provision of the sophisticated support cells for the ELT secondary and tertiary mirrors and the associated complex active optics systems that will ensure these massive, but flexible, mirrors retain their correct shapes and are correctly positioned within the telescope. Great precision is needed if the telescope is to deliver optimum image quality [5].

The fourth contract was signed by Didier Rozière, Managing Director (FAMES, Fogale), and Martin Sellen, Managing Director (FAMES, Micro-Epsilon), on behalf of the FAMES consortium, which is composed of Fogale and Micro-Epsilon. The contract covers the fabrication of a total of 4608 edge sensors for the 798 hexagonal segments of the ELT's primary mirror [6].

These sensors are the most accurate ever used in a telescope and can measure relative positions to an accuracy of a few nanometres. They form a fundamental part of the very complex system that will continuously sense the locations of the ELT primary mirror segments relative to their neighbours and allow the segments to work together to form a perfect imaging system. It is a huge challenge not only to make sensors with the required precision, but also to produce them quickly enough for thousands to be delivered to the necessarily short timescales.

The signing ceremony was also attended by other senior representatives of the companies involved and ESO. It was an excellent opportunity for representatives of the contractors producing many of the giant telescope's optical and mechanical components to get to know each other informally as they begin to help create the world's biggest eye on the sky.

[1] Zerodur was originally developed for astronomical telescopes in the late 1960s. It has almost no thermal expansion, which means that even in the case of large temperature fluctuations, the material does not expand. Chemically, the material is very resistant and can be polished to a high standard of finish. The actual reflective layer, made of aluminum or silver, is usually vaporised onto the extremely smooth surface shortly before the telescope is put into operation. Many well-known telescopes with Zerodur mirrors have been operating reliably for decades. They include, for example, ESO's Very Large Telescope in Chile.

[2] As it is a highly convex, aspherical mirror, fabrication of the secondary is a considerable challenge and the result will be a truly remarkable example of precision optical engineering. As with many elements of the ELT it will be a genuine first in this area of technology. The total weight of the secondary mirror and its support system is 12 tonnes -- and since it hangs over the primary great care must be taken to prevent the mirror from falling!

[3] Most current large telescopes, including the VLT and the NASA/ESA Hubble Space Telescope, use just two curved mirrors to form an image. In these cases a tertiary mirror is sometimes introduced to divert the light to a convenient focus -- that mirror is typically small and flat. However, in the ELT the tertiary also has a curved surface, the use of three mirrors delivering a better final image quality over a larger field of view than would be possible with a two-mirror design.

[4] The contract for the polishing of the secondary mirror has already been awarded.

[5] The M2 and M3 cells are complex mechanisms more than 6.5 metres wide and weighing close to 12 tonnes including the mirrors themselves. They provide alignment and tracking capabilities with a high precision hexapod with an absolute accuracy of tens of micrometres. The cells also compensate for mirror surface deformations in the order of tens of nanometres by means of an innovative solution using warping harnesses and lateral supports.

[6] At this time 3288 have been firmly ordered (for the ELT Phase 1) and an additional 1320 will be included in the ELT Phase 2, making 4608 in total.

More information

ESO is the foremost intergovernmental astronomy organisation in Europe and the world's most productive ground-based astronomical observatory by far. It is supported by 16 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom, along with the host state of Chile. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and two survey telescopes. VISTA works in the infrared and is the world's largest survey telescope and the VLT Survey Telescope is the largest telescope designed to exclusively survey the skies in visible light. ESO is a major partner in ALMA, the largest astronomical project in existence. And on Cerro Armazones, close to Paranal, ESO is building the 39-metre Extremely Large Telescope, the ELT, which will become "the world's biggest eye on the sky".


* Further information about the ELT -

* Further information on SCHOTT -

* Further information on the SENER group -

* Further information on Fogale - and Micro-Epsilon - (the FAMES consortium)


Richard Hook
ESO Public Information Officer
Garching bei München, Germany
Tel: +49 89 3200 6655
Cell: +49 151 1537 3591


Related Sensors Articles:

Sensors detect disease markers in breath
A small, thin square of an organic plastic that can detect disease markers in breath or toxins in a building's air could soon be the basis of portable, disposable sensor devices.
Are your sensors spying on you?
Cyber experts at Newcastle University, UK, have revealed the ease with which malicious websites and installed apps can spy on us using just the information from the motion sensors in our mobile phones.
A novel method for the fabrication of active-matrix 3-D pressure sensors
A new study, affiliated with South Korea's Ulsan National Institute of Science and Technology (UNIST), developed a transistor-type active-matrix pressure sensor using foldable substrate and air-dielectric layer.
For female mosquitoes, two sets of odor sensors are better than one
A team of Vanderbilt biologists has found that the malaria mosquito has a second complete set of odor receptors that are specially tuned to human scents.
Optimized sensors to study learning and memory
Scientists at Max Planck Florida Institute for Neuroscience are working to understand how molecules send messages throughout the neuron.
Pioneering chip extends sensors' battery life
A low-cost chip that enables batteries in sensors to last longer, in some cases by over ten times, has been developed by engineers from the University of Bristol.
New sensors can detect single protein molecules
For the first time, MIT engineers have designed sensors that can detect single protein molecules as they are secreted by cells.
Contracts signed for ELT mirrors and sensors
At a ceremony today at ESO's Headquarters four contracts were signed for major components of the Extremely Large Telescope (ELT) that ESO is building.
Pain sensors specialized for specific sensations
Many pain-sensing nerves in the body are thought to respond to all types of 'painful events', but new UCL research in mice reveals that in fact most are specialized to respond to specific types such as heat, cold or mechanical pain.
3-D-printed organ-on-a-chip with integrated sensors
Researchers have made the first entirely 3-D-printed organ-on-a-chip with integrated sensing.

Related Sensors Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".