Nav: Home

Neuro-imaging maps brain wiring of extinct Tasmanian tiger

January 18, 2017

Scientists have used an imaging technique to reconstruct the brain architecture and neural networks of the thylacine -- better known as the Tasmanian tiger -- an extinct carnivorous marsupial native to Tasmania. The study, published in PLOS ONE, used magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) to scan postmortem specimens of two thylacine brain specimens, both of which were about 100 years old.

The results, when compared to the Tasmanian tiger's closest living relative, the Tasmanian devil, suggest that the larger-brained thylacine had more cortex devoted to planning and decision-making.

"The natural behavior of the thylacine was never scientifically documented," says Gregory Berns, a neuroscientist at Emory University and the lead author of the study. "Our reconstruction of its white matter tracts, or neural wiring, between different regions of its brain is consistent with anecdotal evidence that the thylacine occupied a more complex, predatory ecological niche versus the scavenging niche of the Tasmanian devil."

The comparative study also supports theories of brain evolution suggesting that as brains grow larger they become more modular, or divided into sections associated with discrete functions, Berns says.

Kenneth Ashwell, an anatomist at the University of New South Wales School of Medical Sciences and an expert on the brain evolution of marsupials and monotremes, co-authored the study.

"The technology for imaging the preserved brains of rare, extinct and endangered species is an exciting innovation in the study of brain evolution," Ashwell says. "It will allow us to track pathways and study functional connections that could never be analyzed through older experimental techniques."

Monotremes, such as the egg-laying platypus, are remnants of the first mammals, going back more than 150 million years. Marsupials formed a later branch of mammals, including the best-known example, the kangaroo. Instead of laying eggs, they bear relatively undeveloped young that must be carried in a mother's pouch.

The Tasmanian tiger looked like an amalgam of several animals. It is one of only a few marsupials to have a pouch in both sexes. It was the size and shape of a medium-to-large size dog, but had tiger-like stripes running down its lower back and an abdominal pouch. Its Greek name, Thylacinus cynocephalus, means "dog-headed pouched one."

The fossil record shows that the Tasmanian tiger appeared about four million years ago in Australia. By the 20th century it was extinct, or extremely rare, on the mainland but was still found in Tasmania, the island state off Australia's southern coast. Its demise is attributed to loss of habitat through farming activity, coupled with a bounty scheme placed on the animal after it was suspected of killing sheep and other livestock. The last known Tasmanian tiger died in 1936, in Tasmania's Hobart Zoo.

The Tasmanian devil, another iconic animal of Tasmania, is now the island's largest surviving carnivorous marsupial. It is known for its powerful jaws and scream-like vocalizations. Tasmanian devils are also unique because they suffer from devil facial tumor disease - an infectious, non-viral parasitic cancer which they can transmit to one another through fighting. While the unusual disease makes the animals of interest to cancer researchers, it is threatening the survival of the remaining Tasmanian devils, whose wild population has declined by 70 percent during the past 20 years.

Berns, who was the first to conduct MRI experiments on awake, unrestrained dogs to learn more about their neural processes, was particularly intrigued by the thylacine due to its physical resemblance to dogs.

"The thylacine appears to be an example of convergent evolution, filling a similar niche that members of the canid family did elsewhere," Berns says. "It's interesting, however, that the thylacine brain is very different than the canine brain, despite the physical resemblance of their bodies."

Only four surviving specimens of the brains of Tasmanian tigers exist, and the study gained access to two of them. One was provided by the Smithsonian Institution, taken from a male Tasmanian tiger after it died at the National Zoological Park in 1905. The other specimen, loaned to the researchers by the Australian Museum in Sydney, came from an animal that died during the 1930s.

The two Tasmanian devil brains used in the study included one from the Smithsonian Institution, which had been preserved around the same time as its Tasmanian tiger specimen. The other specimen came from a recently deceased animal and was supplied by the Save the Tasmanian Devil Program, a conservation initiative of the Australian and Tasmanian governments.

MRI scans reveal information about the architecture of a brain -- known as gray matter. Diffusion tensor imaging (DTI) provides information about how molecules move through biological tissues, revealing the connective pathways of a brain -- known as white matter.

The technique of using DTI on a non-living brain is mainly applied to research on recently deceased humans, primates and rats. Berns is pioneering the use of a special form of DTI to digitally reconstruct the neural networks of other animals, using archived brain specimens from zoological and museum collections.

In 2015, Berns successfully used DTI on two decade-old specimens to map the sensory and motor systems of the brains of dolphins for the first time. The results showed how at least two areas of the dolphin brain are associated with the auditory system, unlike most mammals that primarily process sound in a single area.

The current digital reconstruction of the brain of the Tasmanian tiger is particularly important, Berns says, not just because the animal is extinct but because the specimens used were much older than those of the dolphins.

"While it is easier to study the brains of animals that have recently died, we've shown that we can successfully use our scanning techniques on specimens that are 100 years old," Berns says. "We now have the technology available to make use of the treasure trove of museum collections around the world."

Berns launched a project called the Brain Ark , a digital archive of high-resolution, three-dimensional brain structures of megafauna, which is publicly accessible via the web so that other researchers can contribute to and draw from the data. It currently includes the scans from the dolphins, Tasmanian tigers and Tasmanian devils.

The digital resource will allow researchers to explore questions about brain evolution, including how brain structure is related to species-specific attributes such as being primarily a predator or prey, foraging strategies, ecological niches and sexual dimorphisms.

"We know a lot about the brains of primates and rats, but there are a lot of other animal brains out there that no one has looked at in any kind of detail," Berns says. "The Brain Ark is going to fill that gap. We are living in a time when much of the planet's megafauna is at risk for extinction. It's important to gather as much data as we can before many of these animals disappear."
-end-


Emory Health Sciences

Related Brain Articles:

Study describes changes to structural brain networks after radiotherapy for brain tumors
Researchers compared the thickness of brain cortex in patients with brain tumors before and after radiation therapy was applied and found significant dose-dependent changes in the structural properties of cortical neural networks, at both the local and global level.
Blue Brain team discovers a multi-dimensional universe in brain networks
Using a sophisticated type of mathematics in a way that it has never been used before in neuroscience, a team from the Blue Brain Project has uncovered a universe of multi-dimensional geometrical structures and spaces within the networks of the brain.
New brain mapping tool produces higher resolution data during brain surgery
Researchers have developed a new device to map the brain during surgery and distinguish between healthy and diseased tissues.
Newborn baby brain scans will help scientists track brain development
Scientists have today published ground-breaking scans of newborn babies' brains which researchers from all over the world can download and use to study how the human brain develops.
New test may quickly identify mild traumatic brain injury with underlying brain damage
A new test using peripheral vision reaction time could lead to earlier diagnosis and more effective treatment of mild traumatic brain injury, often referred to as a concussion.
This is your brain on God: Spiritual experiences activate brain reward circuits
Religious and spiritual experiences activate the brain reward circuits in much the same way as love, sex, gambling, drugs and music, report researchers at the University of Utah School of Medicine.
Brain scientists at TU Dresden examine brain networks during short-term task learning
'Practice makes perfect' is a common saying. We all have experienced that the initially effortful implementation of novel tasks is becoming rapidly easier and more fluent after only a few repetitions.
Balancing time & space in the brain: New model holds promise for predicting brain dynamics
A team of scientists has extended the balanced network model to provide deep and testable predictions linking brain circuits to brain activity.
New view of brain development: Striking differences between adult and newborn mouse brain
Spikes in neuronal activity in young mice do not spur corresponding boosts in blood flow -- a discovery that stands in stark contrast to the adult mouse brain.
Map of teenage brain provides evidence of link between antisocial behavior and brain development
The brains of teenagers with serious antisocial behavior problems differ significantly in structure to those of their peers, providing the clearest evidence to date that their behavior stems from changes in brain development in early life, according to new research led by the University of Cambridge and the University of Southampton, in collaboration with the University of Rome Tor Vergata in Italy.

Related Brain Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Bias And Perception
How does bias distort our thinking, our listening, our beliefs... and even our search results? How can we fight it? This hour, TED speakers explore ideas about the unconscious biases that shape us. Guests include writer and broadcaster Yassmin Abdel-Magied, climatologist J. Marshall Shepherd, journalist Andreas Ekström, and experimental psychologist Tony Salvador.
Now Playing: Science for the People

#514 Arctic Energy (Rebroadcast)
This week we're looking at how alternative energy works in the arctic. We speak to Louie Azzolini and Linda Todd from the Arctic Energy Alliance, a non-profit helping communities reduce their energy usage and transition to more affordable and sustainable forms of energy. And the lessons they're learning along the way can help those of us further south.