Nav: Home

Luminescent proteins provide color to ecological and cheap bio-displays

January 18, 2017

Mobile phone, computer and TV displays all use very expensive colour filters and other components, which cannot be easily recycled. German and Spanish scientists have designed a new screen, which is cheaper and ecological as it uses a hybrid material. This material's luminescent proteins can be used in backlighting systems and colour filters made using a 3D printing technique.

The success of liquid crystal displays (LCD), used in many portable devices such as telephones, laptops and TVs, is largely due to their use of LEDs or inorganic white light-emitting diodes, which provide exceptional image quality and are energy-efficient.

However, these displays have several inconveniencies: the high cost of the colour filters, limited brightness and contrast levels and the difficulty of recycling materials used to make them.

In response to these problems, a team of scientists at the University of Erlangen-Nurnberg (Germany) led by Rubén D. Costa, from Spain, have designed a new display made of natural elements: luminescent proteins, "which will enable, in the not too distant future, the manufacturing of these devices to be done ecologically and at a low cost".

Researchers use these proteins in two parts of the display. On the one hand, in the display's backlighting, using a Bio-LED featuring white light with different coloured luminescent proteins. As well as representing a new design in display backlighting, this technology, details of which were published last year, can be used as a substitute from inorganic phosphorous -a rare and expensive material- used in traditional LED displays.

"The proteins have a photoluminescence quantum yield of more than 75%. High efficiency is guaranteed," says Costa. In addition, they have a low emission bandwidth (30-50 nm), ensuring high colour quality and degradation does not produce significant colour changes".

Details of another protein component to the display, the colour filter, have been published by the scientists in the journal 'Advanced Functional Materials'. Here, the proteins are stored in a polymeric matrix with micrometric resolution using a 3D printing technique, which enables them to maintain their luminescent properties and optimum stability.

"This colour filter meets the necessary requirement to improve displays currently being used in terms of contrast and brightness, within quality standards demanded across the market," says Costa. "This new material will allow for the development of energy-efficient Bio-displays for TVs and mobile telephones, with low production costs, high image quality and ecologically sustainability. Also, these filters are not rigid, allowing them to be used in devices which are flexible and light.
-end-
References:

Rubén D. Costa, A. R. Boccaccini et al. "Micropatterned Down-Converting Coating for White Bio-Hybrid Light-Emitting Diodes". Advanced Functional Materials 27 (Issue 1), 2017.

FECYT - Spanish Foundation for Science and Technology

Related Proteins Articles:

Discovering, counting, cataloguing proteins
Scientists describe a well-defined mitochondrial proteome in baker's yeast.
Interrogating proteins
Scientists from the University of Bristol have designed a new protein structure, and are using it to understand how protein structures are stabilized.
Ancient proteins studied in detail
How did protein interactions arise and how have they developed?
What can we learn from dinosaur proteins?
Researchers recently confirmed it is possible to extract proteins from 80-million-year-old dinosaur bones.
Relocation of proteins with a new nanobody tool
Researchers at the Biozentrum of the University of Basel have developed a new method by which proteins can be transported to a new location in a cell.
Proteins that can take the heat
Ancient proteins may offer clues on how to engineer proteins that can withstand the high temperatures required in industrial applications, according to new research published in the Proceedings of the National Academy of Sciences.
Designer proteins fold DNA
Florian Praetorius and Professor Hendrik Dietz of the Technical University of Munich have developed a new method that can be used to construct custom hybrid structures using DNA and proteins.
The proteins that domesticated our genomes
EPFL scientists have carried out a genomic and evolutionary study of a large and enigmatic family of human proteins, to demonstrate that it is responsible for harnessing the millions of transposable elements in the human genome.
Rare proteins collapse earlier
Some organisms are able to survive in hot springs, while others can only live at mild temperatures because their proteins aren't able to withstand such extreme heat.
How proteins reshape cell membranes
Small 'bubbles' frequently form on membranes of cells and are taken up into their interior.

Related Proteins Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Setbacks
Failure can feel lonely and final. But can we learn from failure, even reframe it, to feel more like a temporary setback? This hour, TED speakers on changing a crushing defeat into a stepping stone. Guests include entrepreneur Leticia Gasca, psychology professor Alison Ledgerwood, astronomer Phil Plait, former professional athlete Charly Haversat, and UPS training manager Jon Bowers.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".