Nav: Home

Soft robot helps the heart beat

January 18, 2017

Harvard University and Boston Children's Hospital researchers have developed a customizable soft robot that fits around a heart and helps it beat, potentially opening new treatment options for people suffering from heart failure.

The soft robotic sleeve twists and compresses in synch with a beating heart, augmenting cardiovascular functions weakened by heart failure. Unlike currently available devices that assist heart function, Harvard's soft robotic sleeve does not directly contact blood. This reduces the risk of clotting and eliminates the need for a patient to take potentially dangerous blood thinner medications. The device may one day be able to bridge a patient to transplant or to aid in cardiac rehabilitation and recovery.

"This research demonstrates that the growing field of soft robotics can be applied to clinical needs and potentially reduce the burden of heart disease and improve the quality of life for patients," said Ellen T. Roche, the paper's first author and former PhD student at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) and The Wyss Institute of Biologically Inspired Engineering at Harvard University. Roche is currently a postdoctoral fellow at the National University of Ireland.

The research, published in Science Translational Medicine, was a collaboration between SEAS, the Wyss Institute and Boston Children's Hospital.

"This work represents an exciting proof of concept result for this soft robot, demonstrating that it can safely interact with soft tissue and lead to improvements in cardiac function. We envision many other future applications where such devices can delivery mechanotherapy both inside and outside of the body," said Conor Walsh, senior author of the paper and the John L. Loeb Associate Professor of Engineering and Applied Sciences at SEAS and Core Faculty Member at the Wyss Institute.

Heart failure affects 41 million people worldwide. Today, some of the options to treat it are mechanical pumps called ventricular assist devices (VADs), which pump blood from the ventricles into the aorta, and heart transplant. While VADs are continuously improving, patients are still at high risk for blood clots and stroke.

To create an entirely new device that doesn't come into contact with blood, Harvard researchers took inspiration from the heart itself. The thin silicone sleeve uses soft pneumatic actuators placed around the heart to mimic the outer muscle layers of the mammalian heart. The actuators twist and compress the sleeve in a similar motion to the beating heart.

The device is tethered to an external pump, which uses air to power the soft actuators.

The sleeve can be customized for each patient, said Roche. If a patient has more weakness on the left side of the heart, for example, the actuators can be tuned to give more assistance on that side. The pressure of the actuators can also increase or decrease over time, as the patient's condition evolves.

The sleeve is attached to the heart using a combination of a suction device, sutures and a gel interface to help with friction between the device and the heart.

The SEAS and Wyss engineers worked with surgeons at Boston Children's Hospital to develop the device and determine the best ways to implant the device and test it on animal models.

"The cardiac field had turned away from idea of developing heart compression instead of blood-pumping VADs due to technological limitations, but now with advancements in soft robotics it's time to turn back," said Frank Pigula, a cardiothoracic surgeon and co-corresponding author on the study, who was formerly clinical director of pediatric cardiac surgery at Boston Children's Hospital and is now a faculty member at University of Louisville and division chief of pediatric cardiac surgery at Kosair Children's Hospital. "Most people with heart failure do still have some function left; one day the robotic sleeve may help their heart work well enough that their quality of life can be restored."

More research needs to be done before the sleeve can be implanted in humans but the research is an important first step towards an implantable soft robot that can augment organ function.

"This research is really significant at the moment because more and more people are surviving heart attacks and ending up with heart failure," said Roche. "Soft robotic devices are ideally suited to interact with soft tissue and give assistance that can help with augmentation of function, and potentially even healing and recovery."
-end-
The research was co-authored by Markus A. Horvath, Isaac Wamala, Ali Alazmani, Sang-Eun Song, William Whyte, Zurab Machaidze, Christopher J. Payne, James Weaver, Gregory Fishbein, Joseph Kuebler, Nikolay V.Vasilyev and David J. Mooney.

It was supported by the Translational Research Program grant from Boston Children's Hospital, a Director's Challenge Cross-Platform grant from the Wyss Institute for Biologically Inspired Engineering, Harvard School of Engineering and Applied Sciences and the Science Foundation Ireland.

Harvard John A. Paulson School of Engineering and Applied Sciences

Related Heart Failure Articles:

Type 2 diabetes may affect heart structure and increase complications and death among heart failure patients of Asian ethnicity
The combination of heart failure and Type 2 diabetes can lead to structural changes in the heart, poorer quality of life and increased risk of death, according to a multi-country study in Asia.
Preventive drug therapy may increase right-sided heart failure risk in patients who receive heart devices
Patients treated preemptively with drugs to reduce the risk of right-sided heart failure after heart device implantation may experience the opposite effect and develop heart failure and post-operative bleeding more often than patients not receiving the drugs.
How the enzyme lipoxygenase drives heart failure after heart attacks
Heart failure after a heart attack is a global epidemic leading to heart failure pathology.
Novel heart pump shows superior outcomes in advanced heart failure
Severely ill patients with advanced heart failure who received a novel heart pump -- the HeartMate 3 left ventricular assist device (LVAD) -- suffered significantly fewer strokes, pump-related blood clots and bleeding episodes after two years, compared with similar patients who received an older, more established pump, according to research presented at the American College of Cardiology's 68th Annual Scientific Session.
NSAID impairs immune response in heart failure, worsens heart and kidney damage
Non-steroidal anti-inflammatory drugs, or NSAIDs, are widely known as pain-killers and can relieve pain and inflammation.
Heart cell defect identified as possible cause of heart failure in pregnancy
A new Tel Aviv University study reveals that one of the possible primary causes of heart failure in pregnant women is a functional heart cell defect.
In heart failure, a stronger heart could spell worse symptoms
Patients with stronger-pumping hearts have as many physical and cognitive impairments as those with weaker hearts, suggesting the need for better treatment.
Patients with common heart failure more likely to have lethal heart rhythms
New Smidt Heart Institute Research shows that patients with Heart Failure with Preserved Ejection Fraction (HFpEF) are more likely to have lethal heart rhythms.
Why does diabetes cause heart failure?
A Loyola University Chicago Stritch School of Medicine study reveals how, on a cellular level, diabetes can cause heart failure.
Oxygen therapy for patients suffering from a heart attack does not prevent heart failure
Oxygen therapy does not prevent the development of heart failure.
More Heart Failure News and Heart Failure Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.