Nav: Home

New dental implant with built-in reservoir reduces risk of infections

January 18, 2017

A multidisciplinary team of researchers at KU Leuven (University of Leuven, Belgium) has developed a dental implant that gradually releases drugs from a built-in reservoir. This helps prevent and fight infections.

Our mouth contains many micro-organisms, including bacterial and fungal pathogens. On traditional dental implants, these pathogens can quickly form a so-called biofilm, which is resistant to antimicrobial drugs like antibiotics. As a result, these implants come with a significant risk of infections that may be difficult to treat.

KU Leuven researchers have now developed a new dental implant that reduces the risk of infections. "Our implant has a built-in reservoir underneath the crown of the tooth," explains lead author Kaat De Cremer. "A cover screw makes it easy to fill this reservoir with antimicrobial drugs (see image 1). The implant is made of a porous composite material, so that the drugs gradually diffuse from the reservoir to the outside of the implant, which is in direct contact with the bone cells (see image 2). As a result, the bacteria can no longer form a biofilm."

In the lab, the implant was subjected to various tests for use with chlorhexidine, a universal mouthwash with a powerful antimicrobial effect. The study shows that the Streptococcus mutans, a type of mouth bacteria that affect the teeth, can no longer form biofilms on the outside of the implant when the reservoir is filled with the mouthwash. Biofilms that were grown beforehand on the implant could be eliminated in the same way. This means that the implant is effective in terms of both preventing and curing infections.
-end-
This study was led by Dr Karin Thevissen, Dr Kaat De Cremer, and Dr Annabel Braem. It is a collaboration between the KU Leuven Centre for Microbial and Plant Genetics, the KU Leuven Department of Materials Engineering, the KU Leuven Biomaterials Research Unit, and the KU Leuven Centre for Surface Chemistry and Catalysis. The study was funded by the KU Leuven Industrial Research Fund.

KU Leuven

Related Pathogens Articles:

Outsmarting pathogens
A new influenza strain appears each flu season, rendering past vaccines ineffective.
Autonomous microtrap for pathogens
Antibiotics are more efficient when they can act on their target directly at the site of infestation, without dilution.
Acidic environment could boost power of harmful pathogens
New findings published in PLOS Pathogens suggest lower pH in the digestive tract may make some bacterial pathogens even more dangerous.
On the trail of pathogens in meat, eggs and raw milk
To make food even safer for humans, experts from scientific institutions, food regulatory authorities and the business community will discuss current developments and strategies at the 'Zoonoses and Food Safety' Symposium at the German Federal Institute for Risk Assessment (BfR) on 4 and 5 November 2019, in Berlin-Marienfelde.
Protozoans and pathogens make for an infectious mix
The new observation that strains of V. cholerae can be expelled into the environment after being ingested by protozoa, and that these bacteria are then primed for colonisation and infection in humans, could help explain why cholera is so persistent in aquatic environments.
Your energy-efficient washing machine could be harboring pathogens
For the first time ever, investigators have identified a washing machine as a reservoir of multidrug-resistant pathogens.
Picky pathogens help non-native tree species invade
Trees have many natural enemies, including pathogens that have evolved to attack certain tree species.
How plague pathogens trick the immune system
Yersinia have spread fear and terror, especially in the past, but today they have still not been completely eradicated.
Metabolomic profiling of antibody response to periodontal pathogens
At the 97th General Session & Exhibition of the International Association for Dental Research (IADR), held in conjunction with the 48th Annual Meeting of the American Association for Dental Research (AADR) and the 43rd Annual Meeting of the Canadian Association for Dental Research (CADR), Jaakko Leskela, University of Helsinki, Finland, gave an oral presentation on 'Metabolomic Profiling of Antibody Response to Periodontal Pathogens.'
Pathogens may have facilitated the evolution of warm-blooded animals
Animals first developed fever as a response to infections: the higher body temperatures primed their immune systems.
More Pathogens News and Pathogens Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.