Soft robot can help a heart to pump

January 18, 2017

Wednesday, 18 January, 2017: An innovative soft robotic sleeve which can help a heart to beat has been developed by researchers including Dr Ellen Roche of National University of Ireland Galway. The soft robotic sleeve wraps around the organ, twisting and compressing in synch with the beating heart, potentially opening new treatment options for people suffering from heart failure.

The research has been published in the journal Science Translational Medicine today.

Dr Roche is the paper's first author and former PhD student at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) and The Wyss Institute of Biologically Inspired Engineering at Harvard University. The research took place at Harvard and at Boston Children's Hospital.

While other therapeutic systems known as ventricular assist devices (VADs) are already used to sustain end-stage heart failure patients awaiting transplant, they extend lives albeit at a high risk due to the number of complications that can occur resulting from their design. Complications include the risk of clotting requiring patients to take potentially dangerous blood thinner medications. Unlike VADs, the soft robotic sleeve does not directly contact blood, avoiding that risk.

With heart failure affecting 41 million people worldwide, the hope is the device may one day be able to bridge a patient to transplant or to aid in cardiac rehabilitation and recovery. "This research demonstrates that the growing field of soft robotics can be applied to clinical needs and potentially reduce the burden of heart disease and improve the quality of life for patients," explains Dr Roche, now a postdoctoral researcher with Professor Peter McHugh in biomedical engineering at National University of Ireland Galway, where she also previously studied for her undergraduate degree in Biomedical Engineering.

To create an entirely new device that does not come into contact with blood, the researchers took inspiration from the heart itself. The thin silicone sleeve uses soft pneumatic actuators placed around the heart to mimic the outer muscle layers of the mammalian heart. The actuators twist and compress the sleeve in a similar motion to the beating heart. The device is tethered to an external pump, which uses air to power the soft actuators.

"The sleeve can be customized for each patient", said Dr Roche. If a patient has more weakness on the left side of the heart, for example, the actuators can be tuned to give more assistance on that side. The pressure of the actuators can also increase or decrease over time, as the patient's condition evolves.

More research needs to be done before the sleeve can be implanted in humans but the work is an important first step towards an implantable soft robot that can augment organ function.

"This research is really significant at the moment because more and more people are ending up with heart failure," said Roche. "Soft robotic devices are ideally suited to interact with soft tissue and give assistance that can help with augmentation of function, and potentially even healing and recovery."
-end-
Senior authors on the study are Professor Conor Walsh, director of the Harvard Biodesign Lab, and Dr Frank Pigula, who was at Boston Childrens Hospital when the research was conducted. The study was co-authored by Markus A. Horvath, Isaac Wamala, Ali Alazmani, Sang-Eun Song, William Whyte, Zurab Machaidze, Christopher J. Payne, James Weaver, Gregory Fishbein, Joseph Kuebler, Nikolay V.Vasilyev and David J. Mooney.

It was supported by the Translational Research Program grant from Boston Children's Hospital, a Director's Challenge Cross-Platform grant from the Wyss Institute for Biologically Inspired Engineering, Harvard School of Engineering and Applied Sciences and Science Foundation Ireland.

Photo captions:


Dr Ellen Roche: An innovative soft robotic sleeve which can help a heart to beat has been developed by researchers including Dr Ellen Roche of National University of Ireland Galway. Dr Roche is pictured at the University where she is now a postdoctoral researcher.

Science Translational Medicine: The research, which took place at Harvard and at Boston Children's Hospital, has been published in the journal Science Translational Medicine today (Under strict embargo until 2pm US ET, Wednesday, 18 January, 2017 or 7pm GMT.)

For further information contact Ruth Hynes, Press and Information Executive, NUI Galway on 091 495695, 0868280521 or ruth.hynes@nuigalway.ie

About NUI Galway


The University was established in the heart of Galway City, on the west coast of Ireland, in 1845. Since then it has advanced knowledge teaching and learning, through research and innovation, and community engagement.

Over 18,000 students study at NUI Galway, where 2,600 staff provide the very best in research-led education.

NUI Galway's teaching and research is recognised through its consistent rise in international rankings. The University is placed in the Top 250 of both the Times Higher Education (THE) World University Rankings 2016/2017 and the QS World University Rankings 2016/17.

With an extensive network of industry, community and academic collaborators around the world, NUI Galway researchers are tackling some of the most pressing issues of our times. Internationally renowned research centres based here include CÚRAM Centre for Research in Medical Devices, Insight Centre for Data Analytics, Moore Institute, Institute for Life course and Society and The Ryan Institute for Environmental, Marine and Energy.

NUI Galway has been listed as one of the most beautiful universities in Europe according to Business Insider. For more information visit http://www.nuigalway.ie or view all NUI Galway news here.

*The University's official title is National University of Ireland Galway. Please note that the only official abbreviation is NUI Galway.

National University of Ireland Galway

Related Heart Failure Articles from Brightsurf:

Top Science Tip Sheet on heart failure, heart muscle cells, heart attack and atrial fibrillation results
Newly discovered pathway may have potential for treating heart failure - New research model helps predict heart muscle cells' impact on heart function after injury - New mass spectrometry approach generates libraries of glycans in human heart tissue - Understanding heart damage after heart attack and treatment may provide clues for prevention - Understanding atrial fibrillation's effects on heart cells may help find treatments - New research may lead to therapy for heart failure caused by ICI cancer medication

Machining the heart: New predictor for helping to beat chronic heart failure
Researchers from Kanazawa University have used machine learning to predict which classes of chronic heart failure patients are most likely to experience heart failure death, and which are most likely to develop an arrhythmic death or sudden cardiac death.

Heart attacks, heart failure, stroke: COVID-19's dangerous cardiovascular complications
A new guide from emergency medicine doctors details the potentially deadly cardiovascular complications COVID-19 can cause.

Autoimmunity-associated heart dilation tied to heart-failure risk in type 1 diabetes
In people with type 1 diabetes without known cardiovascular disease, the presence of autoantibodies against heart muscle proteins was associated with cardiac magnetic resonance (CMR) imaging evidence of increased volume of the left ventricle (the heart's main pumping chamber), increased muscle mass, and reduced pumping function (ejection fraction), features that are associated with higher risk of failure in the general population

Transcendental Meditation prevents abnormal enlargement of the heart, reduces chronic heart failure
A randomized controlled study recently published in the Hypertension issue of Ethnicity & Disease found the Transcendental Meditation (TM) technique helps prevent abnormal enlargement of the heart compared to health education (HE) controls.

Beta blocker use identified as hospitalization risk factor in 'stiff heart' heart failure
A new study links the use of beta-blockers to heart failure hospitalizations among those with the common 'stiff heart' heart failure subtype.

Type 2 diabetes may affect heart structure and increase complications and death among heart failure patients of Asian ethnicity
The combination of heart failure and Type 2 diabetes can lead to structural changes in the heart, poorer quality of life and increased risk of death, according to a multi-country study in Asia.

Preventive drug therapy may increase right-sided heart failure risk in patients who receive heart devices
Patients treated preemptively with drugs to reduce the risk of right-sided heart failure after heart device implantation may experience the opposite effect and develop heart failure and post-operative bleeding more often than patients not receiving the drugs.

How the enzyme lipoxygenase drives heart failure after heart attacks
Heart failure after a heart attack is a global epidemic leading to heart failure pathology.

Novel heart pump shows superior outcomes in advanced heart failure
Severely ill patients with advanced heart failure who received a novel heart pump -- the HeartMate 3 left ventricular assist device (LVAD) -- suffered significantly fewer strokes, pump-related blood clots and bleeding episodes after two years, compared with similar patients who received an older, more established pump, according to research presented at the American College of Cardiology's 68th Annual Scientific Session.

Read More: Heart Failure News and Heart Failure Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.