Nav: Home

Soft robot can help a heart to pump

January 18, 2017

Wednesday, 18 January, 2017: An innovative soft robotic sleeve which can help a heart to beat has been developed by researchers including Dr Ellen Roche of National University of Ireland Galway. The soft robotic sleeve wraps around the organ, twisting and compressing in synch with the beating heart, potentially opening new treatment options for people suffering from heart failure.

The research has been published in the journal Science Translational Medicine today.

Dr Roche is the paper's first author and former PhD student at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) and The Wyss Institute of Biologically Inspired Engineering at Harvard University. The research took place at Harvard and at Boston Children's Hospital.

While other therapeutic systems known as ventricular assist devices (VADs) are already used to sustain end-stage heart failure patients awaiting transplant, they extend lives albeit at a high risk due to the number of complications that can occur resulting from their design. Complications include the risk of clotting requiring patients to take potentially dangerous blood thinner medications. Unlike VADs, the soft robotic sleeve does not directly contact blood, avoiding that risk.

With heart failure affecting 41 million people worldwide, the hope is the device may one day be able to bridge a patient to transplant or to aid in cardiac rehabilitation and recovery. "This research demonstrates that the growing field of soft robotics can be applied to clinical needs and potentially reduce the burden of heart disease and improve the quality of life for patients," explains Dr Roche, now a postdoctoral researcher with Professor Peter McHugh in biomedical engineering at National University of Ireland Galway, where she also previously studied for her undergraduate degree in Biomedical Engineering.

To create an entirely new device that does not come into contact with blood, the researchers took inspiration from the heart itself. The thin silicone sleeve uses soft pneumatic actuators placed around the heart to mimic the outer muscle layers of the mammalian heart. The actuators twist and compress the sleeve in a similar motion to the beating heart. The device is tethered to an external pump, which uses air to power the soft actuators.

"The sleeve can be customized for each patient", said Dr Roche. If a patient has more weakness on the left side of the heart, for example, the actuators can be tuned to give more assistance on that side. The pressure of the actuators can also increase or decrease over time, as the patient's condition evolves.

More research needs to be done before the sleeve can be implanted in humans but the work is an important first step towards an implantable soft robot that can augment organ function.

"This research is really significant at the moment because more and more people are ending up with heart failure," said Roche. "Soft robotic devices are ideally suited to interact with soft tissue and give assistance that can help with augmentation of function, and potentially even healing and recovery."
-end-
Senior authors on the study are Professor Conor Walsh, director of the Harvard Biodesign Lab, and Dr Frank Pigula, who was at Boston Childrens Hospital when the research was conducted. The study was co-authored by Markus A. Horvath, Isaac Wamala, Ali Alazmani, Sang-Eun Song, William Whyte, Zurab Machaidze, Christopher J. Payne, James Weaver, Gregory Fishbein, Joseph Kuebler, Nikolay V.Vasilyev and David J. Mooney.

It was supported by the Translational Research Program grant from Boston Children's Hospital, a Director's Challenge Cross-Platform grant from the Wyss Institute for Biologically Inspired Engineering, Harvard School of Engineering and Applied Sciences and Science Foundation Ireland.

Photo captions:


Dr Ellen Roche: An innovative soft robotic sleeve which can help a heart to beat has been developed by researchers including Dr Ellen Roche of National University of Ireland Galway. Dr Roche is pictured at the University where she is now a postdoctoral researcher.

Science Translational Medicine: The research, which took place at Harvard and at Boston Children's Hospital, has been published in the journal Science Translational Medicine today (Under strict embargo until 2pm US ET, Wednesday, 18 January, 2017 or 7pm GMT.)

For further information contact Ruth Hynes, Press and Information Executive, NUI Galway on 091 495695, 0868280521 or ruth.hynes@nuigalway.ie

About NUI Galway


The University was established in the heart of Galway City, on the west coast of Ireland, in 1845. Since then it has advanced knowledge teaching and learning, through research and innovation, and community engagement.

Over 18,000 students study at NUI Galway, where 2,600 staff provide the very best in research-led education.

NUI Galway's teaching and research is recognised through its consistent rise in international rankings. The University is placed in the Top 250 of both the Times Higher Education (THE) World University Rankings 2016/2017 and the QS World University Rankings 2016/17.

With an extensive network of industry, community and academic collaborators around the world, NUI Galway researchers are tackling some of the most pressing issues of our times. Internationally renowned research centres based here include CÚRAM Centre for Research in Medical Devices, Insight Centre for Data Analytics, Moore Institute, Institute for Life course and Society and The Ryan Institute for Environmental, Marine and Energy.

NUI Galway has been listed as one of the most beautiful universities in Europe according to Business Insider. For more information visit http://www.nuigalway.ie or view all NUI Galway news here.

*The University's official title is National University of Ireland Galway. Please note that the only official abbreviation is NUI Galway.

National University of Ireland Galway

Related Heart Failure Articles:

New hope for treating heart failure
Heart failure patients who are getting by on existing drug therapies can look forward to a far more effective medicine in the next five years or so, thanks to University of Alberta researchers.
Activated T-cells drive post-heart attack heart failure
Chronic inflammation after a heart attack can promote heart failure and death.
ICU care for COPD, heart failure and heart attack may not be better
Does a stay in the intensive care unit give patients a better chance of surviving a chronic obstructive pulmonary disease (COPD) or heart failure flare-up or even a heart attack, compared with care in another type of hospital unit?
Tissue engineering advance reduces heart failure in model of heart attack
Researchers have grown heart tissue by seeding a mix of human cells onto a 1-micron-resolution scaffold made with a 3-D printer.
Smoking may lead to heart failure by thickening the heart wall
Smokers without obvious signs of heart disease were more likely than nonsmokers and former smokers to have thickened heart walls and reduced heart pumping ability.
After the heart attack: Injectable gels could prevent future heart failure (video)
During a heart attack, clots or narrowed arteries block blood flow, harming or killing cells in the heart.
Heart failure after first heart attack may increase cancer risk
People who develop heart failure after their first heart attack have a greater risk of developing cancer when compared to first-time heart attack survivors without heart failure, according to a study today in the Journal of the American College of Cardiology.
Scientists use 'virtual heart' to model heart failure
A team of researchers have created a detailed computational model of the electrophysiology of congestive heart failure, a leading cause of death.
Increase in biomarker linked with increased risk of heart disease, heart failure, death
In a study published online by JAMA Cardiology, Elizabeth Selvin, Ph.D., M.P.H., of the Johns Hopkins Bloomberg School of Public Health, Baltimore, and colleagues examined the association of six-year change in high-sensitivity cardiac troponin T with incident coronary heart disease, heart failure and all-cause mortality.
1 in 4 patients develop heart failure within 4 years of first heart attack
One in four patients develop heart failure within four years of a first heart attack, according to a study in nearly 25,000 patients presented today at Heart Failure 2016 and the 3rd World Congress on Acute Heart Failure by Dr.

Related Heart Failure Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#532 A Class Conversation
This week we take a look at the sociology of class. What factors create and impact class? How do we try and study it? How does class play out differently in different countries like the US and the UK? How does it impact the political system? We talk with Daniel Laurison, Assistant Professor of Sociology at Swarthmore College and coauthor of the book "The Class Ceiling: Why it Pays to be Privileged", about class and its impacts on people and our systems.