Nav: Home

Improved measurements of antiproton's magnetic moment deepen mystery of baryonic asymmetry

January 18, 2017

One of the deepest mysteries of physics today is why we seem to live in a world composed only of matter, while the Big Bang should have created equal amounts of matter and antimatter. Around the world, scientists including Stefan Ulmer's team from RIKEN are designing and carrying out high-precision measurements to try to discover fundamental dissimilarities between matter and antimatter that could lead to the discrepancy.

In work published in Nature Communications, Ulmer's team has found, using a sophisticated technique that involves trapping individual particles in a magnetic device, that the magnetic moment of the antiproton is extremely close to that of the proton, with six-fold higher accuracy than before.

To perform the experiments, they took antiprotons generated by CERN's Antiproton Decelerator and placed them into a powerful magnetic device--called a Penning trap--where they could be stored for periods of more than a year. When doing the measurements--at times carefully chosen to fall during night shifts or on weekends to minimize magnetic interference--they took individual antiprotons from the containment trap and moved them into another trap, where they were cooled to practically absolute zero and placed into a powerful and complex magnetic field, allowing the group to measure the magnetic moment.

Based on six measurements done using this method, the group found that the moment (g-factor) of the antiproton is 2.7928465(23), while that of the proton was previously found to be 2.792847350(9)--with the number in parentheses indicating the amount of uncertainty in the final digits. This puts the two measurements--which are both absolute, rather than relative ones--to within 0.8 parts per million of one another.

According to Ulmer, "We see a deep contradiction between the standard model of particle physics, under which the proton and antiproton are identical mirror images of one another, and the fact that on cosmological scales, there is an enormous gap between the amount of matter and antimatter in the universe. Our experiment has shown, based on a measurement six times more precise than any done before, that the standard model holds up, and that there seems in fact to be no difference in the proton/antiproton magnetic moments at the achieved measurement uncertainty. We did not find any evidence for CPT violation."

In future experiments the team plans to target the application of an even more sophisticated double Penning trap technique. With this method 1000-fold improved measurements are possible. The group has applied this technique already to measure the proton magnetic moment and has the set of required methods at hand to conduct this measurement with the antiproton as well. "However, the implementation of this experimental scheme is technically very challenging and will require several iterations", says Hiroki Nagahama, a PhD student in Ulmer's group and first author of the just published study, "we are planning to conduct this measurement in one of the next antiproton runs."
-end-
The achievement is collaborative work carried out in the framework of the RIKEN-led BASE collaboration which includes also the University of Tokyo, Japan, the Max Planck Institute for Nuclear Physics, Heidelberg, the University of Mainz, GSI Darmstadt and the Leibnitz University Hannover, Germany.

RIKEN

Related Antimatter Articles:

First demonstration of antimatter wave interferometry
An international collaboration with participation of the University of Bern has demonstrated for the first time in an interference experiment that antimatter particles also behave as waves besides having particle properties.
Researchers discover CP violation in charm meson decays
Researchers from the Higher School of Economics and Yandex, as part of the LHCb collaboration at CERN, have been the first to discover CP violation in charm meson decays.
Physicists reveal why matter dominates universe
Physicists in the College of Arts and Sciences at Syracuse University have confirmed that matter and antimatter decay differently for elementary particles containing charmed quarks.
Why are you and I and everything else here?
We're here because there's more matter than antimatter in the universe.
New finding of particle physics may help to explain the absence of antimatter
With the help of computer simulations, particle physics researchers may be able to explain why there is more matter than antimatter in the Universe.
Laser blasting antimatter into existence
Antimatter is an exotic material that vaporizes when it contacts regular matter.
Machine learning improves accuracy of particle identification at LHC
Scientists from the Higher School of Economics have developed a method that allows physicists at the Large Hadron Collider (LHC) to separate between various types of elementary particles with a high degree of accuracy.
Laser breakthrough has physicists close to cooling down antimatter
For the first time, physicists at CERN have observed a benchmark atomic energy transition in anithydrogen, a major step toward cooling and manipulating the basic form of antimatter.
Mini antimatter accelerator could rival the likes of the Large Hadron Collider
Researchers have found a way to accelerate antimatter in a 1000x smaller space than current accelerators, boosting the science of exotic particles.
Matter-antimatter asymmetry may interfere with the detection of neutrinos
From the data collected by the LHCb detector at the Large Hadron Collider, it appears that the particles known as charm mesons and their antimatter counterparts are not produced in perfectly equal proportions.
More Antimatter News and Antimatter Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.