Nav: Home

RIT engineer researches the impact of shear stress on cell circulation

January 18, 2017

How do cells and protein molecules respond to stress as they travel through blood vessels? Could resulting changes to these biological components impact how diseases are spread?

Researchers at Rochester Institute of Technology are answering those questions using fluid dynamics and mechano-biology strategies to better understand blood flow and how cells moving through blood vessels are affected by shear stress--pressure and friction on objects. Understanding the biomechanics of blood flow and the role shear stress plays on cell and protein behavior could help lessen the incidence of cancer metastasis and heart failure, or improve the process of engineering replacement tissues and organs, said Jiandi Wan, an assistant professor of microsystems engineering in RIT's Kate Gleason College of Engineering, who recently received a $476,505 award from the Gordon and Betty Moore Foundation for this work.

"This helps us understand how cells and protein respond to shear stress exerted by blood flow. That is the fundamental question because then you can regulate the blood flow to control cellular and molecular behaviors and by understanding the mechanism of what controls that flow," said Wan. "We can use this information to determine how the blood can bring diseases to other parts of the body, and can we control it? This could have a huge clinical impact--once you have this fundamental understanding."

Wan's research focuses on how biological cells "know" and respond to externally-applied mechanical forces. It is part of a growing field of research, and his research team has developed state-of-art experimental models and devices to explore the mechano-sensing dynamics of red blood cells, circulating cancer cells and primary erythroid cells--red blood cells or their developmental precursors. The work could advance the understanding of biological mechanics and enhance the ability to treat diseases with effective therapeutic strategies.

There is friction, or shear stress, on large serum proteins as they move through blood vessels resulting, in some instances, in the protein being stretched and changed, Wan explained. Using nanophotonics--the study of the interaction of nano-scale objects using light technologies--Wan has been able to determine some distinct changes to cell proteins and structures.

"The broad application for this is, we are able to detect how mechanical force changes proteins structures without any additional labeling of the protein," he explained. "This conformational change plays a role in blood clotting and other important biological processes, too. But, we are trying to directly observe this phenomenon using opto-fluidics, where the refractive index change of protein due to flow-induced conformational change can be recorded."

Mechano-biology is an emerging area of science and engineering that focuses on mechanical processes and their effect on cells and protein molecules, on the influence of mechanical process on biological functions and the study of these functions at cellular and molecular levels.

This research builds on previous studies by Wan on the in vitro microfluidic circulatory system for circulating cancer cells. He and his research team developed protocols and a microfluidic device and system to mimic the transportation of circulating tumor cells to explore shear stress effects, particularly interested in how tumor cells move from primary to secondary locations in the body. Wan is also an adjunct, assistant professor in the Center for Translational Neuromedicine at the University of Rochester, involved in similar studies determining how the blood circulation system in the brain "knows" it must strategically increase or decrease flow to deliver oxygen for nerve cells and structures of the brain. Research in these areas could be used in the development of novel materials and strategies for brain and cancer research.

"This fundamental understanding applies to a wide range of applications, that's why I am so excited about this work, and how it can impact diseases," Wan said. "Think about our body, your blood vessels are like a supplying pipe, and blood flow delivers nutrients and oxygen, it carries out waste. If you do not have the proper blood flow or distribution in place, your organs die; you cannot live. It is that simple."
-end-


Rochester Institute of Technology

Related Stress Articles:

How do our cells respond to stress?
Molecular biologists reverse-engineer a complex cellular structure that is associated with neurodegenerative diseases such as ALS
How stress remodels the brain
Stress restructures the brain by halting the production of crucial ion channel proteins, according to research in mice recently published in JNeurosci.
Why stress doesn't always cause depression
Rats susceptible to anhedonia, a core symptom of depression, possess more serotonin neurons after being exposed to chronic stress, but the effect can be reversed through amygdala activation, according to new research in JNeurosci.
How plants handle stress
Plants get stressed too. Drought or too much salt disrupt their physiology.
Stress in the powerhouse of the cell
University of Freiburg researchers discover a new principle -- how cells protect themselves from mitochondrial defects.
Measuring stress around cells
Tissues and organs in the human body are shaped through forces generated by cells, that push and pull, to ''sculpt'' biological structures.
Cellular stress at the movies
For the first time, biological imaging experts have used a custom fluorescence microscope and a novel antibody tagging tool to watch living cells undergoing stress.
Maternal stress at conception linked to children's stress response at age 11
A new study published in the Journal of Developmental Origins of Health and Disease finds that mothers' stress levels at the moment they conceive their children are linked to the way children respond to life challenges at age 11.
A new way to see stress -- using supercomputers
Supercomputer simulations show that at the atomic level, material stress doesn't behave symmetrically.
Beware of evening stress
Stressful events in the evening release less of the body's stress hormones than those that happen in the morning, suggesting possible vulnerability to stress in the evening.
More Stress News and Stress Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.