Nav: Home

RIT engineer researches the impact of shear stress on cell circulation

January 18, 2017

How do cells and protein molecules respond to stress as they travel through blood vessels? Could resulting changes to these biological components impact how diseases are spread?

Researchers at Rochester Institute of Technology are answering those questions using fluid dynamics and mechano-biology strategies to better understand blood flow and how cells moving through blood vessels are affected by shear stress--pressure and friction on objects. Understanding the biomechanics of blood flow and the role shear stress plays on cell and protein behavior could help lessen the incidence of cancer metastasis and heart failure, or improve the process of engineering replacement tissues and organs, said Jiandi Wan, an assistant professor of microsystems engineering in RIT's Kate Gleason College of Engineering, who recently received a $476,505 award from the Gordon and Betty Moore Foundation for this work.

"This helps us understand how cells and protein respond to shear stress exerted by blood flow. That is the fundamental question because then you can regulate the blood flow to control cellular and molecular behaviors and by understanding the mechanism of what controls that flow," said Wan. "We can use this information to determine how the blood can bring diseases to other parts of the body, and can we control it? This could have a huge clinical impact--once you have this fundamental understanding."

Wan's research focuses on how biological cells "know" and respond to externally-applied mechanical forces. It is part of a growing field of research, and his research team has developed state-of-art experimental models and devices to explore the mechano-sensing dynamics of red blood cells, circulating cancer cells and primary erythroid cells--red blood cells or their developmental precursors. The work could advance the understanding of biological mechanics and enhance the ability to treat diseases with effective therapeutic strategies.

There is friction, or shear stress, on large serum proteins as they move through blood vessels resulting, in some instances, in the protein being stretched and changed, Wan explained. Using nanophotonics--the study of the interaction of nano-scale objects using light technologies--Wan has been able to determine some distinct changes to cell proteins and structures.

"The broad application for this is, we are able to detect how mechanical force changes proteins structures without any additional labeling of the protein," he explained. "This conformational change plays a role in blood clotting and other important biological processes, too. But, we are trying to directly observe this phenomenon using opto-fluidics, where the refractive index change of protein due to flow-induced conformational change can be recorded."

Mechano-biology is an emerging area of science and engineering that focuses on mechanical processes and their effect on cells and protein molecules, on the influence of mechanical process on biological functions and the study of these functions at cellular and molecular levels.

This research builds on previous studies by Wan on the in vitro microfluidic circulatory system for circulating cancer cells. He and his research team developed protocols and a microfluidic device and system to mimic the transportation of circulating tumor cells to explore shear stress effects, particularly interested in how tumor cells move from primary to secondary locations in the body. Wan is also an adjunct, assistant professor in the Center for Translational Neuromedicine at the University of Rochester, involved in similar studies determining how the blood circulation system in the brain "knows" it must strategically increase or decrease flow to deliver oxygen for nerve cells and structures of the brain. Research in these areas could be used in the development of novel materials and strategies for brain and cancer research.

"This fundamental understanding applies to a wide range of applications, that's why I am so excited about this work, and how it can impact diseases," Wan said. "Think about our body, your blood vessels are like a supplying pipe, and blood flow delivers nutrients and oxygen, it carries out waste. If you do not have the proper blood flow or distribution in place, your organs die; you cannot live. It is that simple."
-end-


Rochester Institute of Technology

Related Stress Articles:

Captive meerkats at risk of stress
Small groups of meerkats -- such as those commonly seen in zoos and safari parks -- are at greater risk of chronic stress, new research suggests.
Stress may protect -- at least in bacteria
Antibiotics harm bacteria and stress them. Trimethoprim, an antibiotic, inhibits the growth of the bacterium Escherichia coli and induces a stress response.
Some veggies each day keeps the stress blues away
Eating three to four servings of vegetables daily is associated with a lower incidence of psychological stress, new research by University of Sydney scholars reveals.
Prebiotics may help to cope with stress
Probiotics are well known to benefit digestive health, but prebiotics are less well understood.
Building stress-resistant memories
Though it's widely assumed that stress zaps a person's ability to recall memory, it doesn't have that effect when memory is tested immediately after a taxing event, and when subjects have engaged in a highly effective learning technique, a new study reports.
Stress during pregnancy
The environment the unborn child is exposed to inside the womb can have a major effect on her or his development and future health.
New insights into how the brain adapts to stress
New research led by the University of Bristol has found that genes in the brain that play a crucial role in behavioural adaptation to stressful challenges are controlled by epigenetic mechanisms.
Uncertainty can cause more stress than inevitable pain
Knowing that there is a small chance of getting a painful electric shock can lead to significantly more stress than knowing that you will definitely be shocked.
Stress could help activate brown fat
Mild stress stimulates the activity and heat production by brown fat associated with raised cortisol, according to a study published today in Experimental Physiology.
Experiencing major stress makes some older adults better able to handle daily stress
Dealing with a major stressful event appears to make some older adults better able to cope with the ups and downs of day-to-day stress.

Related Stress Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Changing The World
What does it take to change the world for the better? This hour, TED speakers explore ideas on activism—what motivates it, why it matters, and how each of us can make a difference. Guests include civil rights activist Ruby Sales, labor leader and civil rights activist Dolores Huerta, author Jeremy Heimans, "craftivist" Sarah Corbett, and designer and futurist Angela Oguntala.
Now Playing: Science for the People

#521 The Curious Life of Krill
Krill may be one of the most abundant forms of life on our planet... but it turns out we don't know that much about them. For a create that underpins a massive ocean ecosystem and lives in our oceans in massive numbers, they're surprisingly difficult to study. We sit down and shine some light on these underappreciated crustaceans with Stephen Nicol, Adjunct Professor at the University of Tasmania, Scientific Advisor to the Association of Responsible Krill Harvesting Companies, and author of the book "The Curious Life of Krill: A Conservation Story from the Bottom of the World".