Nav: Home

Study finds new target for controlling cell division

January 18, 2017

COLLEGE STATION -- Modern genome sequencing methods used to measure the efficiency of synthesis of individual protein during cell division has found that the enzymes that make lipids and membranes were synthesized at much greater efficiency when a cell is ready to split.

That is a conclusion of collaborative research published this month in the European Molecular Biology Organization Journal, according to Dr. Michael Polymenis, a Texas A&M AgriLife Research biochemist in College Station and lead author.

Microscopy images of dividing yeast cells accumulating lipid droplets (shown as bright spots) because they have lost their ability to regulate the synthesis of a key lipogenic enzyme. (Photo courtesy of Dr. Michael Polymenis, Texas A&M AgriLife Research)

Polymenis said the finding provides new targets for controlling cell division in future studies. That's important, he said, because dysregulated cell division is a factor in some diseases, such as cancer.

"Understanding the role of protein synthesis during cell division will shed light on when cells will initiate their division, how fast they will complete it, the number of successive cell divisions, and the coordination of cell proliferation with the available nutrients," said Dr. Heidi Blank, Texas A&M University assistant scientist and the paper's co-author.

The research profiled yeast cells from the time of cell birth to identify messenger RNAs as they translated into proteins. That showed the development of lipids late in the cell cycle and the connection to cell division.

The report, which included scientists from Texas A&M and The Buck Institute for Research on Aging, noted that no studies previously had "queried directly and comprehensively the efficiency with which each individual protein is made during cell division in growing cells."

It turns out that not all proteins are made with the same efficiency, Polymenis said.

"If the dream of every cell is to become two cells as the Nobelist François Jacob famously quipped in 1971, then it is protein synthesis that makes cellular dreams come true," he said. "Protein synthesis underpins much of cell growth and determines the rate at which cells proliferate."

The research combined computational approaches to analyze the data by Dr. Rodolfo Aramayo, Texas A&M biology professor in College Station, and relied on state-of-the-art genome sequencing facilities at Texas A&M, directed by Dr. Charlie Johnson. It was funded by AgriLife Research, Texas A&M and the National Institutes of Health.
-end-


Texas A&M AgriLife Communications

Related Cell Division Articles:

Discovery of a novel chromosome segregation mechanism during cell division
When cells divide, chromosomes need to be evenly segregated. This equal distribution is important to accurately pass genetic information to the next generation.
Researchers identify earliest known protein needed for cell division
Researchers from three US universities have identified, using roundworms, the earliest-acting protein known to duplicate the centriole, a tiny cylinder-shaped structure that is a key component of the machinery that organizes cell division in animals.
Study finds new target for controlling cell division
Modern genome sequencing methods used to measure the efficiency of synthesis of individual protein during cell division has found that the enzymes that make lipids and membranes were synthesized at much greater efficiency when a cell is ready to split.
Calcium aids chromosome condensation prior to cell division
Research led by the University of Osaka found that calcium ions help maintain the structure of chromosomes during mitosis by promoting their condensation.
Live cell imaging of asymmetric cell division in fertilized plant cells
Plant biologists have succeeded for the first time in visualizing how egg cells in plants divides unequally (asymmetric cell division) after being fertilized.
Three rings stop cell division in plants
Arising from a collaboration between plant and animal biologists, and organic chemists at ITbM, Nagoya University, the group succeeded in developing a new compound, a triarylmethane that can rapidly inhibit cell division in plants.
Strong, steady forces at work during cell division
Biologists who study the mechanics of cell division have for years disagreed about how much force is at work when the cell's molecular engines are lining chromosomes up in the cell, preparing to winch copies to opposite poles across a bridge-like structure called the kinetochore to form two new cells.
Unconventional cell division in the Caribbean Sea
Bacteria are immortal as long as they keep dividing. For decades it has been assumed that a continuous, proteinaceous ring is necessary to drive the division of most microorganisms.
Differing duration of brain stem cell division
Stem cells in the developing human brain take more time to arrange the chromosomes before distribution than stem cells of great apes.
Cell division and inflammatory disease link revealed
A ground-breaking study by University of Manchester and Liverpool scientists and published in the journal eLife has identified a new link between inflammation and cell division.

Related Cell Division Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Setbacks
Failure can feel lonely and final. But can we learn from failure, even reframe it, to feel more like a temporary setback? This hour, TED speakers on changing a crushing defeat into a stepping stone. Guests include entrepreneur Leticia Gasca, psychology professor Alison Ledgerwood, astronomer Phil Plait, former professional athlete Charly Haversat, and UPS training manager Jon Bowers.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".