Nav: Home

New research on shallow warm clouds will advance climate models, weather forecasts

January 18, 2017

LAWRENCE -- Growing up around Oklahoma City, David Mechem spent a lot of time scanning the skies.

"We don't have mountains or ocean there, but we do have the sky," he said. "That's our natural beauty. I was very interested in severe weather and tornados."

That curiosity eventually blossomed into a research career. Today, Mechem is an associate professor in the Department of Geography & Atmospheric Science at the University of Kansas. His academic work centers on cloud microphysics and dynamics and how cloud systems are organized at different scales.

"Clouds, the visible presence of moisture and phase changes of water, play a role in most interesting meteorological processes on planet Earth," Mechem said.

Now, he's leading a new $525,000, three-year grant from the U.S. Department of Energy to better understand the fundamental processes governing the behavior of shallow clouds, the low-hanging cottony clouds often seen on a summer day or over ocean waters.

"Shallow, low-altitude clouds play an important role in our climate system by scattering sunlight back to space," Mechem said. "Shallow cumulus clouds in particular also play an important role in atmospheric circulation by transporting heat and moisture from the surface upward, which helps set the stage for deeper clouds such as those that produce thunderstorms. Current climate models and weather forecast models still struggle with handling these clouds."

The KU researcher said a better grasp of cumulus clouds would hone scientists' ability to estimate changes to the global climate over the coming decades.

"Many of the disagreements among global climate model predictions have been traced to how the models represent these low clouds," Mechem said. "You can think of low clouds as the climate's refrigerator. They're very bright and reflect sunlight back to space, so there's a cooling effect from these low clouds. It's fairly obvious in a changing climate we need to know if they're going to increase or decrease. If we get more low clouds, they might lessen warming. If they go away, that might amplify warming."

In particular, Mechem's study will look at an aspect of cumulus-cloud behavior called "entrainment."

"Entrainment is the mixing of cloudy air and air from outside the cloud," he said. "The rising air that forms cumulus clouds is buoyant, which makes it go upward. As the cloudy air rises, drier air from outside the cloud is mixed in and weakens the updraft. This entrainment causes the rising motion to slow, which is why these clouds remain shallow," he said. "The combination of buoyancy and entrainment gives rise to the puffy, cauliflower-like appearance of these clouds. We are looking for innovative ways to mathematically represent this mixing process in current model cloud parameterizations to improve weather forecasts and climate model projections."

Mechem said a better grasp on fundamental processes governing the behavior of shallow clouds would lead to more accurate projections of changing climate over future decades and better shorter-term weather forecasts.

"This is a particular challenge because these clouds are much smaller -- maybe a kilometer in horizontal size -- than a typical climate model grid size, which is around 50 to 100 kilometers, or weather forecast model grid size, about 12 kilometers. So, the models cannot directly resolve the action of individual clouds. Instead, the bulk effects of the clouds are represented in climate and weather prediction models using idealized mathematical treatments called 'parameterizations.'"

Additionally, Mechem said advances in modeling of shallow cumulus clouds -- clouds most people associate with fair weather -- could sharpen forecasting of severe weather.

"These are the shallow, puffy clouds you see in summer, but they transport moisture from the Earth's surface upward into the atmosphere," he said. "From a day-to-day weather perspective, they help set the stage for deeper thunderstorm events. Getting these clouds right is also important for being able to forecast thunderstorms, in particular the time when they begin."

Mechem's analysis of shallow cumulus clouds will hinge in part on observations from high-frequency profiling radar carried out at sites such as DOE's Eastern North Atlantic atmospheric observatory located in the Azores archipelago in the Atlantic Ocean. Other work will take place at the department's Southern Great Plains observatory, comprising instruments arrayed across about 9,000 square miles in Oklahoma and Kansas.

With the better-quality data, Mechem will carry out sophisticated computer modeling of low clouds.

"A major component of this work is running high-resolution numerical simulations using a technique called large-eddy simulation," he said. "These are fluid-flow models that fully represent the turbulence in the atmosphere. In our models, we can reproduce entraining clouds and calculate entrainment. In a sense, we call the model's output 'truth' with which we can test out ideas about how entrainment should work."

The results of Mechem's research will appear in scholarly publications and presentation of results at academic conferences. The DOE grant also will support the work and training of KU graduate students in atmospheric science.

University of Kansas

Related Behavior Articles:

Religious devotion as predictor of behavior
'Religious Devotion and Extrinsic Religiosity Affect In-group Altruism and Out-group Hostility Oppositely in Rural Jamaica,' suggests that a sincere belief in God -- religious devotion -- is unrelated to feelings of prejudice.
Brain stimulation influences honest behavior
Researchers at the University of Zurich have identified the brain mechanism that governs decisions between honesty and self-interest.
Brain pattern flexibility and behavior
The scientists analyzed an extensive data set of brain region connectivity from the NIH-funded Human Connectome Project (HCP) which is mapping neural connections in the brain and makes its data publicly available.
Butterflies: Agonistic display or courtship behavior?
A study shows that contests of butterflies occur only as erroneous courtships between sexually active males that are unable to distinguish the sex of the other butterflies.
Sedentary behavior associated with diabetic retinopathy
In a study published online by JAMA Ophthalmology, Paul D.
More Behavior News and Behavior Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Teaching For Better Humans
More than test scores or good grades — what do kids need to prepare them for the future? This hour, guest host Manoush Zomorodi and TED speakers explore how to help children grow into better humans, in and out of the classroom. Guests include educators Olympia Della Flora and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#535 Superior
Apologies for the delay getting this week's episode out! A technical glitch slowed us down, but all is once again well. This week, we look at the often troubling intertwining of science and race: its long history, its ability to persist even during periods of disrepute, and the current forms it takes as it resurfaces, leveraging the internet and nationalism to buoy itself. We speak with Angela Saini, independent journalist and author of the new book "Superior: The Return of Race Science", about where race science went and how it's coming back.