Nav: Home

New research on shallow warm clouds will advance climate models, weather forecasts

January 18, 2017

LAWRENCE -- Growing up around Oklahoma City, David Mechem spent a lot of time scanning the skies.

"We don't have mountains or ocean there, but we do have the sky," he said. "That's our natural beauty. I was very interested in severe weather and tornados."

That curiosity eventually blossomed into a research career. Today, Mechem is an associate professor in the Department of Geography & Atmospheric Science at the University of Kansas. His academic work centers on cloud microphysics and dynamics and how cloud systems are organized at different scales.

"Clouds, the visible presence of moisture and phase changes of water, play a role in most interesting meteorological processes on planet Earth," Mechem said.

Now, he's leading a new $525,000, three-year grant from the U.S. Department of Energy to better understand the fundamental processes governing the behavior of shallow clouds, the low-hanging cottony clouds often seen on a summer day or over ocean waters.

"Shallow, low-altitude clouds play an important role in our climate system by scattering sunlight back to space," Mechem said. "Shallow cumulus clouds in particular also play an important role in atmospheric circulation by transporting heat and moisture from the surface upward, which helps set the stage for deeper clouds such as those that produce thunderstorms. Current climate models and weather forecast models still struggle with handling these clouds."

The KU researcher said a better grasp of cumulus clouds would hone scientists' ability to estimate changes to the global climate over the coming decades.

"Many of the disagreements among global climate model predictions have been traced to how the models represent these low clouds," Mechem said. "You can think of low clouds as the climate's refrigerator. They're very bright and reflect sunlight back to space, so there's a cooling effect from these low clouds. It's fairly obvious in a changing climate we need to know if they're going to increase or decrease. If we get more low clouds, they might lessen warming. If they go away, that might amplify warming."

In particular, Mechem's study will look at an aspect of cumulus-cloud behavior called "entrainment."

"Entrainment is the mixing of cloudy air and air from outside the cloud," he said. "The rising air that forms cumulus clouds is buoyant, which makes it go upward. As the cloudy air rises, drier air from outside the cloud is mixed in and weakens the updraft. This entrainment causes the rising motion to slow, which is why these clouds remain shallow," he said. "The combination of buoyancy and entrainment gives rise to the puffy, cauliflower-like appearance of these clouds. We are looking for innovative ways to mathematically represent this mixing process in current model cloud parameterizations to improve weather forecasts and climate model projections."

Mechem said a better grasp on fundamental processes governing the behavior of shallow clouds would lead to more accurate projections of changing climate over future decades and better shorter-term weather forecasts.

"This is a particular challenge because these clouds are much smaller -- maybe a kilometer in horizontal size -- than a typical climate model grid size, which is around 50 to 100 kilometers, or weather forecast model grid size, about 12 kilometers. So, the models cannot directly resolve the action of individual clouds. Instead, the bulk effects of the clouds are represented in climate and weather prediction models using idealized mathematical treatments called 'parameterizations.'"

Additionally, Mechem said advances in modeling of shallow cumulus clouds -- clouds most people associate with fair weather -- could sharpen forecasting of severe weather.

"These are the shallow, puffy clouds you see in summer, but they transport moisture from the Earth's surface upward into the atmosphere," he said. "From a day-to-day weather perspective, they help set the stage for deeper thunderstorm events. Getting these clouds right is also important for being able to forecast thunderstorms, in particular the time when they begin."

Mechem's analysis of shallow cumulus clouds will hinge in part on observations from high-frequency profiling radar carried out at sites such as DOE's Eastern North Atlantic atmospheric observatory located in the Azores archipelago in the Atlantic Ocean. Other work will take place at the department's Southern Great Plains observatory, comprising instruments arrayed across about 9,000 square miles in Oklahoma and Kansas.

With the better-quality data, Mechem will carry out sophisticated computer modeling of low clouds.

"A major component of this work is running high-resolution numerical simulations using a technique called large-eddy simulation," he said. "These are fluid-flow models that fully represent the turbulence in the atmosphere. In our models, we can reproduce entraining clouds and calculate entrainment. In a sense, we call the model's output 'truth' with which we can test out ideas about how entrainment should work."

The results of Mechem's research will appear in scholarly publications and presentation of results at academic conferences. The DOE grant also will support the work and training of KU graduate students in atmospheric science.
-end-


University of Kansas

Related Behavior Articles:

Is Instagram behavior motivated by a desire to belong?
Does a desire to belong and perceived social support drive a person's frequency of Instagram use?
A 3D view of climatic behavior at the third pole
Research across several areas of the 'Third Pole' -- the high-mountain region centered on the Tibetan Plateau -- shows a seasonal cycle in how near-surface temperature changes with elevation.
Witnessing uncivil behavior
When people witness poor customer service, a manager's intervention can help reduce hostility toward the company or brand, according to WSU research.
Whole-brain imaging of mice during behavior
In a study published in Neuron, Emilie Macé from Botond Roska's group and collaborators demonstrate how functional ultrasound imaging can yield high-resolution, brain-wide activity maps of mice for specific behaviors.
Swarmlike collective behavior in bicycling
Nature is full of examples of large-scale collective behavior; humans also exhibit this behavior, most notably in pelotons, the mass of riders in bicycle races.
My counterpart determines my behavior
Whether individuals grow up in a working-class environment or in an academic household, they take on behaviors that are typical for their class -- so goes the hypothesis.
A gene required for addictive behavior
Cocaine can have a devastating effect on people. It directly stimulates the brain's reward center, and, more importantly, induces long-term changes to the reward circuitry that are responsible for addictive behaviors.
Supercomputing the emergence of material behavior
Chemists at the University of California, San Diego designed the first artificial protein assembly (C98RhuA) whose conformational dynamics can be chemically and mechanically toggled.
The neural circuitry of parental behavior
HHMI scientists have deconstructed the brain circuits that control parenting behavior in mice, and identified discrete sets of cells that control actions, motivations, and hormonal changes involved in nurturing young animals.
Parenting behavior in adoptive families
A new longitudinal study of adoptive families looked at whether symptoms of depression in adoptive fathers is also related to over-reactive parenting and behavior problems in children; the study also examined how social support networks affect parenting.
More Behavior News and Behavior Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.