Special issue highlights research at UM Schools of Medicine and Dentistry

January 18, 2017

Baltimore, Md., January 18, 2017 - New research by scientists at the University of Maryland School of Medicine (UM SOM) and the University of Maryland School of Dentistry (UM SOD), is highlighted in a special issue of Pathogens and Disease.

The issue focuses on key issues in infection and immunity, which are crucial research areas at the institution. It includes 22 articles, mini-reviews, and commentaries on a range of infectious agents, including Ebola and Clostridium difficile, as well as new vaccine approaches at the UM SOM Center for Vaccine Development and comparative genomics studies of protozoan parasites at UM SOM Institute for Genome Science.

"I'm very proud to be a part of this undertaking," said one of the editors of the issue, James B. Kaper, PhD, Senior Associate Dean for Academic Affairs and Professor and Chair in the Department of Microbiology & Immunology at UM SOM. "From biofilms to Ebola, this work by scientists at UM SOM and UM SOD is really advancing our knowledge in important ways."

"This special issue, focusing on the work of one institution provides a time capsule of the state-of-the-art research being done at UMB in infectious disease and immunity research," said Editor-in-Chief of Pathogens and Disease, Patrik Bavoil, PhD, Professor & Chair of the Department of Microbial Pathogenesis at UM SOD and Adjunct Professor in the Department of Microbiology and Immunology at UM SOM. "It also provides a glimpse of the collaborative spirit between the School of Medicine and the School of Dentistry in terms of infectious disease research."

Alan Schmaljohn, PhD, a Professor in the Department of Microbiology & Immunology at UM SOM, along with George Lewis, PhD, a Professor of Microbiology and Immunology at UM SOM and director of the Division of Vaccine Research at the UM SOM Institute of Human Virology, co-authored a review paper looking at how Ebola antibodies provide protection. It appears that many Ebola antibodies work not primarily by neutralizing the virus, but by targeting cells that have already been infected by the virus. By doing this, the cell-targeting antibodies decrease transmission of the virus from infected cells to healthy cells. The paper illustrates the complex ways by which these antibodies protect against the disease.

Tonya Webb, PhD, an Associate Professor in the Department of Microbiology & Immunology, contributed two papers. In one, she focuses on sphingosine 1-phosphate (S1P), a molecule that plays a key role in immunity and inflammation. She argues that it may be possible to target the S1P pathway as a way to fight cancer.

In another paper, Dr. Webb looked at the central signaling pathways that activate the innate immune system. One of these pathways is the AMPK pathway, which gets activated during viral infection. Dr. Webb and her colleagues found that the pathway is also active in human tumor cells. This finding has potential clinical significance, because there are certain drugs that can induce activation of the AMPK pathway, including the already-approved diabetes drug Metformin. Treatment with these drugs might increase the ability of the immune system to recognize and kill cancer cells.

Another article details an investigation into the antibiotic-resistant superbug Clostridium difficile, which causes 30,000 deaths in the United States each year and for which, as yet, no effective prevention is available. Antibodies against the bacterial toxins, the culprit of the disease, have proven to be protective against the infection in animal disease models and in clinical trials. However, antibodies are impractical for prevention due to their high cost and short life in serum after delivery. In this study, Hanping Feng, PhD, Professor in the Department of Microbial Pathogenesis at UM SOD and Adjunct Associate Professor in the Department of Microbiology and Immunology at UM SOM, and his colleagues engineered an attenuated virus for delivering anti-toxin antibodies. They demonstrated that virus-infected mice express highly potent anti-toxin antibodies that are fully protective against both primary and recurrent C. difficile infection for up to two months. This novel strategy has great potential for the prevention against C. difficile infection.

An article co-authored by Alison J. Scott, PhD, Research Associate Professor of the Department of Microbial Pathogenesis at UM SOD, along with Robert K. Ernst, PhD, Professor in the Department of Microbial Pathogenesis at UM SOD and an Adjunct Professor in the Department of Microbiology and Immunology at UM SOM, focused on new methods and tools to investigate lipid A, advancing the study of lipids in the interactions of bacteria and their hosts. The researchers improved the ability to detect host and bacterial lipids as much as 100-fold, employing the matrix norharmane in mass spectrometric imaging experiments. The paper highlights paths for improving the understanding of how pathogens interact with their animal and human hosts.

"This collaborative work really shows the breadth and depth of the research being done here on infection and immunity," said UM SOM Dean E. Albert Reece, MD, PhD, MBA, who is also the Vice President for Medical Affairs, University of Maryland, and the John Z. and Akiko K. Bowers Distinguished Professor. "Our scientists are using exciting approaches and innovative tools to analyze and help solve these critical global health challenges."

"The research being conducted here in dentistry and medicine will significantly advance our understanding of the treatment and prevention of an array of infectious diseases. This issue highlights some of the innovative, collaborative work at the University of Maryland," said School of Dentistry Dean Mark A. Reynolds, DDS, PhD.
-end-


University of Maryland School of Medicine

Related Immune System Articles from Brightsurf:

How the immune system remembers viruses
For a person to acquire immunity to a disease, T cells must develop into memory cells after contact with the pathogen.

How does the immune system develop in the first days of life?
Researchers highlight the anti-inflammatory response taking place after birth and designed to shield the newborn from infection.

Memory training for the immune system
The immune system will memorize the pathogen after an infection and can therefore react promptly after reinfection with the same pathogen.

Immune system may have another job -- combatting depression
An inflammatory autoimmune response within the central nervous system similar to one linked to neurodegenerative diseases such as multiple sclerosis (MS) has also been found in the spinal fluid of healthy people, according to a new Yale-led study comparing immune system cells in the spinal fluid of MS patients and healthy subjects.

COVID-19: Immune system derails
Contrary to what has been generally assumed so far, a severe course of COVID-19 does not solely result in a strong immune reaction - rather, the immune response is caught in a continuous loop of activation and inhibition.

Immune cell steroids help tumours suppress the immune system, offering new drug targets
Tumours found to evade the immune system by telling immune cells to produce immunosuppressive steroids.

Immune system -- Knocked off balance
Instead of protecting us, the immune system can sometimes go awry, as in the case of autoimmune diseases and allergies.

Too much salt weakens the immune system
A high-salt diet is not only bad for one's blood pressure, but also for the immune system.

Parkinson's and the immune system
Mutations in the Parkin gene are a common cause of hereditary forms of Parkinson's disease.

How an immune system regulator shifts the balance of immune cells
Researchers have provided new insight on the role of cyclic AMP (cAMP) in regulating the immune response.

Read More: Immune System News and Immune System Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.