Nav: Home

What humans and primates both know when it comes to numbers

January 18, 2017

For the past several years, Jessica Cantlon has been working to understand how humans develop the concept of numbers, from simple counting to complex mathematical reasoning. Early in her career at the University of Rochester, the assistant professor of brain and cognitive sciences began studying primates in her search for the origins of numeric understanding.

In 2013, she, PhD candidate Steve Ferrigno, and colleagues at Rochester and the Seneca Park Zoo made a surprising discovery: in an experiment using varying quantities of peanuts, baboons (even as young as one year of age) clearly showed an ability to distinguish between large and small quantities of objects.

But the finding raised another question. To what extent might that ability be influenced by other dimensions of those objects--such as their relative surface area--in addition to their number?

This month Cantlon, Ferrigno, and two additional coauthors--Steven Piantadosi, an assistant professor of brain and cognitive sciences at Rochester, and Julian Jara-Ettinger, a postdoctoral researcher in brain and cognitive sciences at MIT--are publishing the results of a new study suggesting that primates do, in fact, have the ability to distinguish large and small quantities of objects, irrespective of the surface area they appear to occupy.

Study subjects included both humans and primates: adults and children in the United States; adults of the Tsimane', a predominately "low numeracy" cultural group that inhabits an area of remote rain forest in Bolivia, and that has been long studied by Piantadosi and Jara-Ettinger; and rhesus monkeys, a species with strong neural and cognitive similarities to humans.

The researchers found that all groups showed a bias toward numbers over surface area in their estimations.

"This shows that the spontaneous aspect of extracting numerical information likely has an evolutionary basis, because this has been seen across all humans and also with other primate species," said Ferrigno.

The study also showed that the bias toward the numerical dimension was strongest in humans compared to primates, and was correlated with increasing age and math education in humans.

"As children get older, they are more likely to represent numerical information as opposed to other quantitative information," Ferrigno added. "Similarly, when Tsimane' adults had more math education, they were more likely to represent numbers as opposed to other dimensions."

The study, published in Nature Communications, is an exciting development for anyone interested in improving early math education. Because the testing process was nonverbal, it could be especially useful in assessing math abilities in young children. "It's very hard to test young children at age four on their math abilities because it's hard to differentiate what they know, and what they know, but just can't express," Ferrigno said. "With further refinements, this type of numerical bias test could in the future be an indicator of how they are progressing in their education."

The study is the first to compare number perception with a single task performed across a diverse testing population.

To test the relative importance of numerical quantities versus surface area, researchers presented subjects with dot arrays, varying in both the number of dots and the relative surface area they occupied. For each array the subjects then selected one of two icons to categorize the array as a large or small quantity.

To keep the task the same across groups, no verbal description of the categories was provided; instead, subjects learned from nonverbal demonstration by the experimenters, and trial and error feedback.

The tests with primates and children and adults in the United States were conducted with touch screen monitors; Tsimane' adults, who have limited exposure to such devices, were tested with laminated printouts.

Cantlon says the study shows "that the initial step toward becoming mathematically sophisticated likely had to do with focusing in on the number of objects, not just total mass or size." In a broader sense, she adds, it shows "how humans got to be the way they are.

"This is about understanding human origins and how humans evolved thought processes that are mathematically sophisticated."
-end-


University of Rochester

Related Brain Articles:

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.
Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.
Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.
Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.
BRAIN Initiative tool may transform how scientists study brain structure and function
Researchers have developed a high-tech support system that can keep a large mammalian brain from rapidly decomposing in the hours after death, enabling study of certain molecular and cellular functions.
Wiring diagram of the brain provides a clearer picture of brain scan data
In a study published today in the journal BRAIN, neuroscientists led by Michael D.
Blue Brain Project releases first-ever digital 3D brain cell atlas
The Blue Brain Cell Atlas is like ''going from hand-drawn maps to Google Earth'' -- providing previously unavailable information on major cell types, numbers and positions in all 737 brain regions.
Landmark study reveals no benefit to costly and risky brain cooling after brain injury
A landmark study, led by Monash University researchers, has definitively found that the practice of cooling the body and brain in patients who have recently received a severe traumatic brain injury, has no impact on the patient's long-term outcome.
Brain cells called astrocytes have unexpected role in brain 'plasticity'
Researchers from the Salk Institute have shown that astrocytes -- long-overlooked supportive cells in the brain -- help to enable the brain's plasticity, a new role for astrocytes that was not previously known.
Largest brain study of 62,454 scans identifies drivers of brain aging
In the largest known brain imaging study, scientists from Amen Clinics (Costa Mesa, CA), Google, John's Hopkins University, University of California, Los Angeles and the University of California, San Francisco evaluated 62,454 brain SPECT (single photon emission computed tomography) scans of more than 30,000 individuals from 9 months old to 105 years of age to investigate factors that accelerate brain aging.
More Brain News and Brain Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.