Nav: Home

Climate change prompts Alaska fish to change breeding behavior

January 18, 2017

One of Alaska's most abundant freshwater fish species is altering its breeding patterns in response to climate change. This could impact the ecology of northern lakes, which already acutely feel the effects of a changing climate.

That's the main finding of a recent University of Washington study published in Global Change Biology that analyzed reproductive patterns of three-spine stickleback fish over half a century in Alaska's Bristol Bay region. The data show that stickleback breed earlier and more often each season in response to earlier spring ice breakup and longer ice-free summers.

While several papers have speculated that conditions brought on by a warming climate may allow animals to breed more often in a single year, this has only been empirically shown in insects. This study is the first to document multiple breeding cycles for fish in a single season due to climate change, said lead author Rachel Hovel, a postdoctoral researcher in the UW's School of Aquatic and Fishery Sciences.

"The exciting thing about this paper is that it shows, for the first time, the emergence of multiple breeding in a vertebrate as a response to climate change," Hovel said. "Climate change literature features many predictions and vulnerability assessments, but we don't have many opportunities to actually observe species' responses over time, as this is very data-intensive. Our ability to detect multiple breeding in fish is attributed to our comprehensive and high-quality long-term dataset."

The data were collected from 1963 to 2015 in Alaska's Lake Aleknagik, home to one of the UW's Alaska Salmon Program research stations. The research program has for decades recorded the abundance of juvenile sockeye salmon and other fish that live in the region's freshwater lakes. For 52 years, fish were captured in nets along the lakeshore at 10 different sites every seven days between June and September. All fish were identified and measured.

While the program's monitoring was designed to track the commercially important sockeye salmon population, scientists also meticulously recorded every other fish present, including three-spine stickleback. Stickleback represent almost half of the fish found in Lake Aleknagik, with juvenile sockeye salmon nearly matching that percentage. Three-spine stickleback make up a large percentage of the fish communities in many northern lakes, so these findings could be relevant throughout the region, Hovel said.

"Alaska is warming about twice as rapidly as most of the rest of the planet," she said. "These fish are adapted to survive in relatively cold environments with limited productive seasons. The responses to rapid warming that we see in lakes, like early spring ice breakup, are releasing some of these constraints."

Stickleback are born near the shore, then move to the middle of the lake to feed on zooplankton. Adults return to the shore in the summer to spawn; males will build the nest and attract a female, who then lays the eggs. Males guard the nest until the fish hatch, usually after about two weeks.

By analyzing decades of data showing fish sizes throughout each summer, Hovel and collaborators could determine roughly when certain fish were born ? a larger fish captured in August was indicative of an early season brood, while a smaller fish captured on the same day likely came from a brood that hatched later in the summer.

Using these data and additional environmental data, researchers found that three-spine stickleback spawned earlier in years when ice breakup occurred earlier, and in some years, the fish produced more than one brood. Given the short summers in Alaska, most stickleback have time and stamina for only one brood, but increasingly they are rearing two broods a summer as climate change ushers in earlier springs.

These factors could have wider ecological effects, as three-spine stickleback are a dominant fish species in many northern lakes. This is particularly true for sticklebacks' primary competitor in many coastal lakes in Alaska: juvenile sockeye salmon. The two species share the same habitats in lakes and generally eat the same things.

"If stickleback are increasing in abundance because of their modified reproduction strategy, this can have ecosystem implications for the productivity of species we commercially care about, like sockeye salmon," Hovel said.

Researchers don't yet know if breeding more often and earlier in life is beneficial for three-spine stickleback, but it does appear that over the long term, the fish will likely increase their abundance.

"We don't know exactly what this means for demographics of this species," Hovel explained. "It could also mean that fish are living shorter lives because there's a higher physiological cost to breeding more than once. In the lower-latitude extent of their range, fish mature earlier and die earlier."
-end-
Other co-authors are Thomas Quinn, a UW professor of aquatic and fishery sciences; and Stephanie Carlson at University of California, Berkeley, who earned her doctorate at the UW and worked with the Alaska Salmon Program.

Data collection for this study was funded by the Pacific Salmon Seafood Industry, the Gordon and Betty Moore Foundation, the Alaska Department of Fish and Game and the National Science Foundation. Hovel's analysis was funded by the H. Mason Keeler and Richard and Lois Worthington endowed professorships.

For more information, contact Hovel at rhovel@uw.edu or 206-616-5761.

B-roll available: https://flic.kr/p/QLPCfo

Images available: https://flic.kr/s/aHskMcjwzy

University of Washington

Related Climate Change Articles:

Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).
Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.
Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.
Could climate change cause infertility?
A number of plant and animal species could find it increasingly difficult to reproduce if climate change worsens and global temperatures become more extreme -- a stark warning highlighted by new scientific research.
Predicting climate change
Thomas Crowther, ETH Zurich identifies long-disappeared forests available for restoration across the world.
Historical climate important for soil responses to future climate change
Researchers at Lund University in Sweden, in collaboration with colleagues from the University of Amsterdam, examined how 18 years of drought affect the billions of vital bacteria that are hidden in the soil beneath our feet.
Can forests save us from climate change?
Additional climate benefits through sustainable forest management will be modest and local rather than global.
From crystals to climate: 'Gold standard' timeline links flood basalts to climate change
Princeton geologists used tiny zircon crystals found in volcanic ash to rewrite the timeline for the eruptions of the Columbia River flood basalts, a series of massive lava flows that coincided with an ancient global warming period 16 million years ago.
Think pink for a better view of climate change
A new study says pink noise may be the key to separating out natural climate variability from climate change that is influenced by human activity.
Climate taxes on agriculture could lead to more food insecurity than climate change itself
New IIASA-led research has found that a single climate mitigation scheme applied to all sectors, such as a global carbon tax, could have a serious impact on agriculture and result in far more widespread hunger and food insecurity than the direct impacts of climate change.
More Climate Change News and Climate Change Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#541 Wayfinding
These days when we want to know where we are or how to get where we want to go, most of us will pull out a smart phone with a built-in GPS and map app. Some of us old timers might still use an old school paper map from time to time. But we didn't always used to lean so heavily on maps and technology, and in some remote places of the world some people still navigate and wayfind their way without the aid of these tools... and in some cases do better without them. This week, host Rachelle Saunders...
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.