Nav: Home

Vitamin B-12, and a knockoff version, create complex market for marine vitamins

January 18, 2017

The New Year is a busy time for pharmacies and peddlers of all health-related products. In the oceans, marine organisms rely on nutrients, too, but the source of their vitamins is sometimes mysterious.

University of Washington oceanographers have now found that vitamin B-12 exists in two distinct versions in the oceans. A microbe thought to be a main supplier of B-12 in the open oceans, cyanobacteria, is actually making a "pseudo" version that only its kin can use.

The study has implications for where algae and other organisms can get a vitamin that is essential to fueling marine life. The paper is in the Jan. 10 issue of the Proceedings of the National Academy of Sciences.

"I think the world is getting used to the idea that all lifeforms are in some ways dependent on microorganisms," said corresponding author Anitra Ingalls, a UW associate professor of oceanography. "This is another case where microorganisms are playing a really big role in the survival of others, but not quite in the way that we had expected."

All animals, from humans to whales to sea cucumbers, need vitamin B-12. But only certain microbes can make the complex, cobalt-containing molecule. For land dwellers a main source is the microbes that thrive in animals' guts, which is why beef is such a good source of B-12. Shellfish also accumulate a lot of B-12. In the surface waters of the open oceans, a main supplier of B-12 was believed to have been cyanobacteria.

But the new paper uses various techniques -- including sampling in the Pacific Ocean, genetic analyses and growing bacterial cultures in the lab -- to prove that cyanobacteria make a different form, known as "pseudo" B-12.

That means that all the other light-absorbing phytoplankton in the oceans are getting their B-12 from somewhere else.

"Phytoplankton are incredibly important as the base of the marine food web, for oxygen generation on Earth and carbon uptake in the ocean," said first author Katherine Heal, a UW doctoral student in oceanography. "Somebody's making B-12 for them, and it's not who we thought it was."

The first hint of a knockoff form of B-12 came from the marine algae spirulina, a popular health supplement. Analyses of its contents in Japan showed an unusual form of the B-12 molecule.

In previous research, Heal developed a method for measuring trace amounts of B-12 in seawater that can distinguish between similar molecules. The new study applied that technique to see where different forms of vitamin B-12 exist in the open ocean.

"When I started looking, I saw that in some parts of the ocean the pseudo B-12 is even more common than the regular B-12," Heal said.

The research confirms that virtually all cyanobacteria, the dominant form of light-harvesting organisms in oceanic gyres and other parts of the open ocean, only make and use pseudo B-12. The two forms of B-12 are incompatible, so cyanobacteria also have a different form of the protein that requires that vitamin to function.

"Nobody has shown that this molecule, pseudo B-12, exists in the environment," Heal said. "Now we know where it comes from, why it's there, and we have some hints that it can be rearranged."

The marine environment might contain a specialized subset of microbes that can convert pseudo B-12 into regular B-12, creating a sort of black market for the converted vitamins.

"That would require several specific microbes to coexist in the same place, and suggests a complex interdependency," Ingalls said.

The authors also show that for many parts of the ocean it now appears that regular B-12 is directly supplied by marine archaea. Experiments in the study show that archaea may be the dominant source of B-12 in parts of the ocean where they live, furthering previous results from the UW research group.

"To understand the marine ecosystem, you have to understand what supports growth," Ingalls said. "We know where nitrogen and phosphorus come from. But for vitamin B-12, a molecule we've known about for more than half a century, we're only now realizing who's making it in the marine ecosystem."
-end-
The research was funded by the National Science Foundation and the Simons Foundation. Other UW co-authors are Wei Qin, Francois Ribalet, Anthony Bertagnolli, Willow Coyote-Maestas, Laura Hmelo, Allan Devol, Virginia Armbrust and David Stahl; and James Moffett at the University of Southern California.

For more information, contact Heal at kheal@uw.edu and Ingalls at aingalls@uw.edu or 206-221-6748.

University of Washington

Related Microbes Articles:

Rye is healthy, thanks to an interplay of microbes
Eating rye comes with a variety of health benefits. A new study from the University of Eastern Finland now shows that both lactic acid bacteria and gut bacteria contribute to the health benefits of rye.
Gut microbes may affect the course of ALS
Researchers isolated a molecule that may be under-produced in the guts of patients.
Gut microbes associated with temperament traits in children
Scientists in the FinnBrain research project of the University of Turku discovered that the gut microbes of a 2.5-month-old infant are associated with the temperament traits manifested at six months of age.
Gut microbes eat our medication
Researchers have discovered one of the first concrete examples of how the microbiome can interfere with a drug's intended path through the body.
Microbes can grow on nitric oxide
Nitric oxide (NO) is a central molecule of the global nitrogen cycle.
More Microbes News and Microbes Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...