Nav: Home

Researchers identify a new chromatin regulatory mechanism linked to SirT6

January 18, 2018

Researchers from the Epigenetics and Cancer Biology Program of the Bellvitge Biomedical Research Institute (IDIBELL), led by Dr. Àlex Vaquero, have proposed a new regulation mechanism of the NF-κB pathway, which is associated with accelerated cellular aging, based on the analysis of the function of the SirT6 protein. The results of their work, published in Nature communications, indicate a double mechanism of inhibition of the pathway linked to the action of SirT6 on chromatin.

SirT6 is a sirtuin, an enzyme involved in the cellular response to stress. Specifically, SirT6 protects the stability of the genome and regulates the metabolic balance (homeostasis), and previous studies have already shown that its loss results in an accelerated aging phenotype associated with the hyperactivation of the NF-κB pathway, a family of transcription factors that regulate the cellular response to a wide variety of physiological conditions and that play a key role in cancer, inflammatory response and immune system.

Until now, several hypothesis stated that SirT6 kept the activation level of the NF-κB pathway low, blocking it specifically once it had received an activation signal. "In our study, however, we have identified a new mechanism associated with this regulation, whereby SirT6 not only controls NF-κB at the level of deactivation of specific repressor genes, but also controls the activation of a general repressor of the pathway", explains Dr. Àlex Vaquero, lead author of the study.

Thanks to several biochemical studies carried out in collaboration with the proteomics scientific-technical support unit of IDIBELL, researchers observed how SirT6 interacts with Suv39h1, an enzyme capable of adding methyl groups in a certain region of a histone (H3K9me3). SirT6 promotes the monoubiquitinization of Suv39h1 (Suv39h1mUb) catalyzed by the enzyme SKP2. This modification is of special interest, since it occurs in cysteine residues instead of lysine ones, something only previously observed in very few cases, and mostly in viral or peroxisome proteins. This is the first description of this modification in a nuclear factor in higher eukaryotes.

"The main function of ubiquitinization is to mark proteins - by adding many units of ubiquitin - for their degradation by the proteasome." In the published study, however, monoubiquitinization plays another role, since it interferes with the binding of Suv39h1 to chromatin and promotes that this enzyme "jumps off" the chromatin, activating the gene that acts as a general repressor of the NF-κB pathway", adds Dr. Vaquero.

Researchers have determined that this new SirT6-dependent mechanism of inactivation of the NF-κB pathway is largely related to cellular stress levels, but there are still unresolved questions. "This work opens a new path in the study of the functions of the ubiquitination in nuclear proteins, and suggests a regulatory landscape of these modifications much more complex than previously anticipated", concludes the IDIBELL researcher.
-end-


IDIBELL-Bellvitge Biomedical Research Institute

Related Cancer Articles:

Radiotherapy for invasive breast cancer increases the risk of second primary lung cancer
East Asian female breast cancer patients receiving radiotherapy have a higher risk of developing second primary lung cancer.
Cancer genomics continued: Triple negative breast cancer and cancer immunotherapy
Continuing PLOS Medicine's special issue on cancer genomics, Christos Hatzis of Yale University, New Haven, Conn., USA and colleagues describe a new subtype of triple negative breast cancer that may be more amenable to treatment than other cases of this difficult-to-treat disease.
Metabolite that promotes cancer cell transformation and colorectal cancer spread identified
Osaka University researchers revealed that the metabolite D-2-hydroxyglurate (D-2HG) promotes epithelial-mesenchymal transition of colorectal cancer cells, leading them to develop features of lower adherence to neighboring cells, increased invasiveness, and greater likelihood of metastatic spread.
UH Cancer Center researcher finds new driver of an aggressive form of brain cancer
University of Hawai'i Cancer Center researchers have identified an essential driver of tumor cell invasion in glioblastoma, the most aggressive form of brain cancer that can occur at any age.
UH Cancer Center researchers develop algorithm to find precise cancer treatments
University of Hawai'i Cancer Center researchers developed a computational algorithm to analyze 'Big Data' obtained from tumor samples to better understand and treat cancer.
New analytical technology to quantify anti-cancer drugs inside cancer cells
University of Oklahoma researchers will apply a new analytical technology that could ultimately provide a powerful tool for improved treatment of cancer patients in Oklahoma and beyond.
Radiotherapy for lung cancer patients is linked to increased risk of non-cancer deaths
Researchers have found that treating patients who have early stage non-small cell lung cancer with a type of radiotherapy called stereotactic body radiation therapy is associated with a small but increased risk of death from causes other than cancer.
Cancer expert says public health and prevention measures are key to defeating cancer
Is investment in research to develop new treatments the best approach to controlling cancer?
UI Cancer Center, Governors State to address cancer disparities in south suburbs
The University of Illinois Cancer Center and Governors State University have received a joint four-year, $1.5 million grant from the National Cancer Institute to help both institutions conduct community-based research to reduce cancer-related health disparities in Chicago's south suburbs.
Leading cancer research organizations to host international cancer immunotherapy conference
The Cancer Research Institute, the Association for Cancer Immunotherapy, the European Academy of Tumor Immunology, and the American Association for Cancer Research will join forces to sponsor the first International Cancer Immunotherapy Conference at the Sheraton New York Times Square Hotel in New York, Sept.

Related Cancer Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...