Nav: Home

Using electricity to switch magnetism

January 18, 2018

It's not exactly a new revelation that electricity and magnetism are closely linked. And yet, magnetic and electrical effects have been studied separately for some time now within the field of materials science. Magnetic fields will usually be used to influence magnetic material properties, whilst electrical properties come down to electrical voltage. Then we have multiferroics - a special group of materials that combine the two. In a new development, TU Wien has managed to use electrical fields to control the magnetic oscillations of certain ferrous materials. This has opened up huge potential for computer technology applications, as data is currently transferred in the form of electrical signals but stored magnetically.

Electrical and magnetic materials: poles apart

Within the field of solid state physics, it is often a case of working with material properties that can be influenced by either magnetic or electrical fields. As a general rule, magnetic and electrical effects can be studied separately because their causes are completely different. Magnetic effects come about because particles have an internal magnetic direction called the 'spin', whereas electrical effects result from positive and negative charges within a material that can shift position in relation to one another.

"When it comes to materials with very specific spatial symmetries, however, the two can be combined," explains Professor Andrei Pimenov from the Institute of Solid State Physics at TU Wien. He has been conducting research into this special kind of material - 'multiferroics' - for a number of years now. Multiferroics are currently considered to be a promising new area within solid state physics on a global scale. Interesting experiments have already been performed to research how magnetic and electrical effects can be linked and now Pimenov and his team of researchers have managed to use electrical fields to control the high-frequency magnetic oscillations of a material consisting of iron, boron and rare-earth metals for the first time.

"The material contains iron atoms which are threefold positively charged. They have a magnetic moment oscillating at a frequency of 300 GHz," says Pimenov. "There is no question that these oscillations could be controlled using a magnetic field. But what we have managed to demonstrate is that these oscillations can be altered in a targeted way using an electrical field." This means that a dynamic magnetic effect - the iron atoms' magnetic state of oscillation - can be activated or deactivated using a static electrical field.

Magnetic data storage, electrical writing

This development is particularly interesting for future electronics applications: "Our hard drives store data magnetically, but it is incredibly difficult to write data quickly and accurately in the same way," says Pimenov. "It is so much easier to apply an electrical field with pinpoint precision, as all you need is a simple voltage pulse. The process is very speedy and doesn't involve any significant loss of energy." But now we could potentially have the option of using materials that combine magnetic and electrical effects to bring together the advantages of magnetic storage and electrical writing.

Prof. Andrei Pimenov
Institute for Solid State Physics
TU Wien
Wiedner Hauptstraße 8-10, 1040 Wien
T: 43-1-58801-137 23

Vienna University of Technology

Related Magnetic Field Articles:

Understanding stars: How tornado-shaped flow in a dynamo strengthens the magnetic field
A new simulation based on the von-Kármán-Sodium (VKS) dynamo experiment takes a closer look at how the liquid vortex created by the device generates a magnetic field.
'Quartz' crystals at the Earth's core power its magnetic field
Scientists at the Earth-Life Science Institute at the Tokyo Institute of Technology report in Nature (Fen.
Brightest neutron star yet has a multipolar magnetic field
Scientists have identified a neutron star that is consuming material so fast it emits more x-rays than any other.
Confirmation of Wendelstein 7-X magnetic field
Physicist Sam Lazerson of the US Department of Energy's Princeton Plasma Physics Laboratory has teamed with German scientists to confirm that the Wendelstein 7-X fusion energy device called a stellarator in Greifswald, Germany, produces high-quality magnetic fields that are consistent with their complex design.
High-precision magnetic field sensing
Scientists have developed a highly sensitive sensor to detect tiny changes in strong magnetic fields.
Brilliant burst in space reveals universe's magnetic field
Scientists have detected the brightest fast burst of radio waves in space to date -- locating the source of the event with more precision than previous efforts.
Optical magnetic field sensor can detect signals from the nervous system
The human body is controlled by electrical impulses in the brain, the heart and nervous system.
What did Earth's ancient magnetic field look like?
New work from Carnegie's Peter Driscoll suggests Earth's ancient magnetic field was significantly different than the present day field, originating from several poles rather than the familiar two.
Just what sustains Earth's magnetic field anyway?
Earth's magnetic field shields us from deadly cosmic radiation, and without it, life as we know it could not exist here.
Ironing out the mystery of Earth's magnetic field
The Earth's magnetic field has been existing for at least 3.4 billion years thanks to the low heat conduction capability of iron in the planet's core.

Related Magnetic Field Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...