Nav: Home

New instrument lets doctors view the entire eye with unprecedented level of detail

January 18, 2018

WASHINGTON -- Researchers have developed the first instrument that can provide a detailed image of the entire eye. By incorporating a lens that changes optical parameters in response to an electric current, the innovative technology can produce higher quality images than currently available and could make eye examinations faster and more comfortable for patients by avoiding the need to undergo imaging with multiple instruments to look at different areas of the eye.

"Diseases such as glaucoma affect both the front and back portions of the eye," said Ireneusz Grulkowski, whose research team at Nicolaus Copernicus University, Poland, worked with Pablo Artal's team at the Universidad de Murcia, Spain to develop the new imaging system. "An instrument that can examine the whole eye will improve the patient's experience because they won't have to go through imaging with different devices. It might also one day reduce the number of instruments -- which can be quite expensive -- needed in an ophthalmology clinic."

In Optica, The Optical Society's journal for high impact research, the researchers show that their new optical coherence tomography (OCT) imaging system can not only image both the front and the back of the eye, but can also image the interfaces of the eye's vitreous gel with the retina and lens with unprecedented detail. This new imaging capability could allow scientists to better understand how the vitreous gel that fills the eye interacts with the retina and why it can sometimes become detached with aging.

"We also want to use our instrument to measure opacities in the eye's crystal lens and the vitreous to better understand how various parts of the eye affect the deterioration of vision," said Grulkowski. "We believe that the ability to measure these opacities and other properties of the eye that couldn't be examined before will open up many new ophthalmology applications for OCT."

Increasing imaging depth

The new system is based on OCT, which is commonly used to acquire very detailed, cross-sectional ophthalmology images. Most clinical instruments are limited to imaging depths of 2 to 3 millimeters, and it is difficult to switch between imaging the front and back portions of the eye because the eye is composed of elements that bend the light to focus it onto the retina.

To overcome these challenges, the researchers used an electrically tunable lens to build an OCT instrument that could focus light in a way that enabled whole-eye imaging. Unlike standard glass or plastic lenses, which have fixed parameters, the optical properties of an electrically tunable lens can be dynamically controlled using an electric current.

The OCT system also incorporated a newly commercialized swept light source -- a laser that continuously changes wavelength very rapidly. The wavelength-tunable laser improves the resolution and speed of OCT compared to systems that use other light sources. The researchers integrated high-speed electronics to achieve the imaging depth necessary to enable whole eye imaging.

"We incorporated the electrically tunable lens into a custom-made system that represents the latest generation of OCT technology," said Grulkowski. "We set out to show that we could image both the front and back of the eye without changing instruments. However, we were also able to show that our instrument enhanced the image quality of the OCT images."

The researchers used their new system to measure the anatomical characteristics of the eyes of seven healthy people. Measurements calculated using images from the new system correlated well with those obtained with an ocular biometer, the standard clinical device used today.

Next steps

The researchers are now working to optimize the instrument for imaging of the entire vitreous gel, not just where it interfaces with the lens and retina. The vitreous gel has not been studied intensively and is difficult to image because it is highly transparent. The ability to image the entire vitreous could allow OCT to be used to guide procedures that involve the removal of the vitreous gel from the eye, which is sometimes done to repair retinal detachment.

Although the laboratory version of the set-up is ready to use, further steps will be taken to translate the technology to the clinic. The scientists are focused on optimizing the scan areas and developing processing tools for automatic measurement of the dimensions of the eye. These improvements will enable advanced studies of the proposed scan regimes on a group of patients with different types of opacification in the eye.
-end-
This work was supported by the Polish Ministry of Science and Higher Education, the European Research Council and the European Regional Development Fund.

Paper: I. Grulkowski, S. Manzanera, L. Cwiklinski, F. Sobczuk, K. Karnowski, P. Artal, "Swept source optical coherence tomography and tunable lens technology for comprehensive imaging and biometry of the whole eye," Optica, Volume 5, Issue 1, 52-59 (2018).
DOI: 10.1364/optica.5.000052.

About Optica

Optica is an open-access, online-only journal dedicated to the rapid dissemination of high-impact peer-reviewed research across the entire spectrum of optics and photonics. Published monthly by The Optical Society (OSA), Optica provides a forum for pioneering research to be swiftly accessed by the international community, whether that research is theoretical or experimental, fundamental or applied. Optica maintains a distinguished editorial board of more than 50 associate editors from around the world and is overseen by Editor-in-Chief Alex Gaeta, Columbia University, USA. For more information, visit Optica.

About The Optical Society

Founded in 1916, The Optical Society (OSA) is the leading professional organization for scientists, engineers, students and business leaders who fuel discoveries, shape real-life applications and accelerate achievements in the science of light. Through world-renowned publications, meetings and membership initiatives, OSA provides quality research, inspired interactions and dedicated resources for its extensive global network of optics and photonics experts. For more information, visit osa.org.

Media Contacts:

Rebecca B. Andersen
The Optical Society
202-416-1443
randersen@osa.org

Joshua Miller
The Optical Society
202-416-1435
jmiller@osa.org

The Optical Society

Related Imaging System Articles:

Imaging at the speed of light
Over the past few years, Chunlei Guo and his research team at the University of Rochester have used lasers to manipulate the properties of target materials and make them, for instance, superhydrophilic or superhydrophobic.
Low-cost imaging system detects natural gas leaks in real time
Researchers have developed an infrared imaging system that could one day offer low-cost, real-time detection of methane gas leaks in pipelines and at oil and gas facilities.
Live cell imaging using a smartphone
A recent study from Uppsala University shows how smartphones can be used to make movies of living cells, without the need for expensive equipment.
Nocturnal & GW awarded $2.27m grant for preclinical development of cardiac imaging system
The NIH awarded a $2.27 million Phase II STTR grant to Nocturnal Product Development, LLC, and George Washington University researcher Narine Sarvazyan, Ph.D.
Imaging stroke risk in 4-D
A new MRI technique developed at Northwestern University detects blood flow velocity to identify who is most at risk for stroke, so they can be treated accordingly.
Microscope imaging system integrates virtual reality technology
CaptiView is a microscope image injection system that overlays critical virtual reality imaging directly onto the brain when viewed through the eyepiece during surgery.
Study: Low-dose imaging system performs as well as CT scans to assess pediatric condition
When a child needs repeated x-rays, exposure to radiation is always a concern for parents.
Imaging with an 'optical brush'
Researchers at the MIT Media Lab have developed a new imaging device that consists of a loose bundle of optical fibers, with no need for lenses or a protective housing.
Ghost imaging in the time domain could revolutionize disturbance-sensitive signal imaging
Research results recently presented in the distinguished Nature Photonics journal open up new outlooks on ghost imaging in the time domain.
Innovative components for an imaging system in the terahertz range
Terahertz frequencies offer the unique feature of displaying things that in other frequency ranges, such as the visible, microwave or X-ray ones, would be impossible.

Related Imaging System Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...