Nav: Home

North, east, south, west: The many faces of Abell 1758

January 18, 2018

Resembling a swarm of flickering fireflies, this beautiful galaxy cluster glows intensely in the dark cosmos, accompanied by the myriad bright lights of foreground stars and swirling spiral galaxies. A1758N is a sub-cluster of Abell 1758, a massive cluster containing hundreds of galaxies. Although it may appear serene in this NASA/ESA Hubble Space Telescope image, the sub-cluster actually comprises two even smaller structures currently in the turbulent process of merging.

Although often overshadowed by its more famous cousins -- including the Fornax Cluster and Pandora's Cluster -- Abell 1758 contains more than its fair share of intrigue. The cluster was first identified in 1958, and initially logged as a single massive object. However, some 40 years later the cluster was observed again by the ROSAT satellite X-ray telescope, and astronomers spotted something peculiar: the cluster was not a single concentration of galaxies, but two!

Abell 1758 has since been observed many more times by various observatories -- Hubble, NASA's Chandra X-ray Observatory, ESA's XMM-Newton, and more -- and is now known to have both a double structure and a complex history. It contains two massive sub-clusters sitting some 2.4 million light-years apart. These components, known as A1758N (North) and A1758S (South), are bound together by gravity but without showing signs of interacting.

In this Hubble image only the northern structure of the cluster, A1758N, is visible. A1758N is further split into two sub-structures, known as East (A1758NE) and West (A1758NW). There appear to be disturbances within each of of the two sub-clusters of A1758A -- strong evidence that they are the result of smaller clusters colliding and merging.

Studies have also revealed a radio halo and two radio relics within Abell 1758. Through Hubble's eyes these radio structures are invisible, but radio telescopes reveal an oddly-shaped halo of emission around the cluster. Radio halos are vast sources of diffuse radio emission usually found around the centres of galaxy clusters. They are thought to form when clusters collide and accelerate fast-moving particles to even higher speeds, implying that clusters with radio halos are still forming and merging.

Collisions such as the one A1758N is undergoing are the most energetic events in the Universe apart from the Big Bang itself. Understanding how clusters merge helps astronomers to understand how structures grow and evolve in the Universe. It also helps them to study dark matter, the intracluster medium and galaxies, and to explore how these three components interact -- particularly during mergers.

This image was taken by Hubble's Advanced Camera for Surveys (ACS) and Wide Field Camera 3 (WFC3) as part of an observing programme called RELICS. The programme is imaging 41 massive galaxy clusters, using them as cosmic lenses to search for bright distant galaxies. These will then be studied in more detail using both current telescopes and the future NASA/ESA/CSA James Webb Space Telescope.
-end-
More information

The Hubble Space Telescope is a project of international cooperation between ESA and NASA.

Image credit: NASA, ESA

Links

* Images of Hubble - http://www.spacetelescope.org/images/archive/category/spacecraft/

Contacts

Nicole Shearer
ESA/Hubble, Public Information Officer
Garching bei München, Germany
49-8932006376
nshearer@eso.org

ESA/Hubble Information Centre

Related Universe Articles:

This is how a 'fuzzy' universe may have looked
Scientists at MIT, Princeton University, and Cambridge University have found that the early universe, and the very first galaxies, would have looked very different depending on the nature of dark matter.
And then there was light: looking for the first stars in the Universe
Astronomers are closing in on a signal that has been travelling across the Universe for 12 billion years, bringing them nearer to understanding the life and death of the very earliest stars.
AI learns to model our Universe
An international team has used AI to create a 3D simulation of the Universe.
New voyage to the universe from DESHIMA
Researchers in Japan and the Netherlands jointly developed an originative radio receiver DESHIMA (Deep Spectroscopic High-redshift Mapper) and successfully obtained the first spectra and images with it.
A peek at the birth of the universe
The Square Kilometre Array (SKA) is set to become the largest radio telescope on Earth.
Exactly how fast is the universe expanding?
The collision of two neutron stars (GW170817) flung out an extraordinary fireball of material and energy that is allowing a Princeton-led team of astrophysicists to calculate a more precise value for the Hubble constant, the speed of the universe's expansion.
How heavy elements come about in the universe
Heavy elements are produced during stellar explosion or on the surfaces of neutron stars through the capture of hydrogen nuclei (protons).
The 'stuff' of the universe keeps changing
The composition of the universe--the elements that are the building blocks for every bit of matter -- is ever-changing and ever-evolving, thanks to the lives and deaths of stars.
A universe aglow
Deep observations made with the MUSE spectrograph on ESO's Very Large Telescope have uncovered vast cosmic reservoirs of atomic hydrogen surrounding distant galaxies.
Possible death of the Universe scenario proposed
Some catastrophic scenarios may include the Big Rip during which matter of the Universe and the spacetime are progressively torn apart through the expansion.
More Universe News and Universe Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Uncharted
There's so much we've yet to explore–from outer space to the deep ocean to our own brains. This hour, Manoush goes on a journey through those uncharted places, led by TED Science Curator David Biello.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Dispatch 2: Every Day is Ignaz Semmelweis Day
It began with a tweet: "EVERY DAY IS IGNAZ SEMMELWEIS DAY." Carl Zimmer – tweet author, acclaimed science writer and friend of the show – tells the story of a mysterious, deadly illness that struck 19th century Vienna, and the ill-fated hero who uncovered its cure ... and gave us our best weapon (so far) against the current global pandemic. This episode was reported and produced with help from Bethel Habte and Latif Nasser. Support Radiolab today at Radiolab.org/donate.