Nav: Home

More genes are active in high-performance maize

January 18, 2018

When two maize inbred lines are crossed with each other, an interesting effect occurs: The hybrid offspring have a significantly higher yield than either of the two parent plants. Scientists at the University of Bonn have now investigated a number of genetically distinct hybrids. They showed that the offspring had many more active genes than the original parents. These results may help in the cultivation of even higher-yielding maize varieties. They are published in the journal Current Biology.

Plant breeders have long known that crossbreeding of different inbred lines has a positive effect on the yield. However, the causes of this so-called "heterosis effect" are largely unclear. "For that reason we took a closer look at one specific inbred-hybrid combination a few years ago", explains Prof. Dr. Frank Hochholdinger from the Institute of Crop Science and Resource Conservation (INRES) at the University of Bonn. "We were able to show that the hybrid offspring has many more active genes than its parents. But at that time we did not know if this applied just to this specific combination of parent plants, or if it was a general mechanism."

In the present study, the scientists therefore examined not just one, but six different inbred-hybrid combinations. The parental inbred lines were distantly related and evenly distributed throughout the entire maize phylogenetic tree. This is almost like pairing a dachshund with a sheepdog, then a pug, and finally with a labrador.

"We have now analyzed which genes were transcribed in the original plants and which in the offspring", explains Jutta Baldauf from INRES. "This confirmed the findings of our earlier work: The hybrids always contained a far larger number of active genes than their parents."

Complementation makes maize more productive

Maize plants contain two variants of each gene, also known as alleles. One of these alleles comes from the female, the other from the male parent. They are often not equally active, with one variant being read more frequently than the other. Some alleles may even be completely turned off.

As the propagation of inbred lines means that they are self-pollinated over many generations, the two alleles of most of their genes are identical. This can lead to certain genes not being transcribed at all. However, these genes may be active in another inbred line. If these parent lines are now crossed with each other, active genes of one parent complement inactive genes of the other parent in the offspring.

"On average, we therefore count more active genes in the offspring", explains Baldauf. And not just a few more: The scientists put the genetic gain at 500 to 600 additionally active genes on average. The genetic material of maize comprises around 40,000 genes in total. "The complementation of SPE genes, the abbreviation stands for "Single Parent Expression", could be one of the factors why hybrids perform better than their parents", says Prof. Hochholdinger.

Maize has many genes that have remained virtually unchanged for millions of years. These "old" genes are so important for the plant that mutations in them can dramatically affect plant performance. In contrast, most SPE genes developed later in the course of evolution. They do not take on vital key functions and can therefore be active in one maize inbred line, but not in another. Many of them belong to certain groups of so-called transcription factors. These are proteins that regulate the activity of other genes.

The results may facilitate the cultivation of better performing maize varieties in the medium term. "With SPE genes, we provide plant growers with genetic markers for this purpose", emphasizes Hochholdinger. "It may be possible to choose specific hybridization partners on the basis of these markers, which could result in particularly high-yielding hybrids." These are immensely important for the long-term nutrition of the increasing world population: Experts anticipate that agricultural yields have to increase by 70 percent by 2050. Maize is already the most productive crop at present; it therefore plays a particularly important role in nutrition.
-end-
Publication: Jutta A. Baldauf, Caroline Marcon, Andrew Lithio, Lucia Vedder, Lena Altrogge, Hans-Peter Piepho, Heiko Schoof, Dan Nettleton and Frank Hochholdinger: Single parent expression is a general mechanism that drives extensive complementation of non-syntenic genes in maize (Zea mays L.) hybrids; Current Biology, Volume 28, 2018; DOI: 10.1016/j.cub.2017.12.027

Contact:

Prof. Dr. Frank Hochholdinger
INRES - Crop Functional Genomics
University of Bonn
Tel. 49-0-228/73-60334 or -60331
E-mail: hochhold@uni-bonn.de

Jutta Baldauf
INRES - Crop Functional Genomics
University of Bonn
Tel. 49-0-228/73-54205
E-mail: baldauf@uni-bonn.de

University of Bonn

Related Maize Articles:

Detailed new genome for maize shows the plant has deep resources for continued adaptation
A much more detailed reference genome for maize is published in Nature today.
Corn with a cover of grass
Corn raised for biofuel can result in eroded soils, as all materials are removed from the field.
Geography and culture may shape Latin American and Caribbean maize
Variations in Latin American and Caribbean maize populations may be linked to anthropological events such as migration and agriculture, according to a study published April 12, 2017 in the open-access journal PLOS ONE by Claudia Bedoya from the International Maize and Wheat Improvement Center (CIMMYT) and colleagues.
New plant research leads to discovery of a gene that increases seed yield in maize
Researchers from VIB-UGent have discovered a gene that significantly increases plant growth and seed yield in maize.
Maize study finds genes that help crops adapt to change
A new study analyzed close to 4,500 maize varieties to identify more than 1,000 genes driving large-scale adaptation to the environment.
Mutant maize offers key to understanding plant growth
New findings by a University of California, Riverside-led team of researchers, lend support to the second idea, that the orientation of cell division is critical for overall plant growth.
DNA study unravels the history of the world's most produced cereal
Genome sequence of a 5,310-year-old maize cob provides new insights into the early stages of maize domestication.
DNA evidence from 5,310-year-old corn cob fills gaps in history
Researchers who have sequenced the genome of a 5,310-year-old corn cob have discovered that the maize grown in central Mexico all those years ago was genetically more similar to modern maize than to its wild ancestor.
Vitamin A orange maize improves night vision
A new study has found that vitamin A-biofortified orange maize significantly improves visual functions in children.
Soil management may help stabilize maize yield in the face of climate change
Given that predicted climate changes are expected to affect maize yields, many researchers and companies are focusing on improving maize varieties to withstand more stressful environments.

Related Maize Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#530 Why Aren't We Dead Yet?
We only notice our immune systems when they aren't working properly, or when they're under attack. How does our immune system understand what bits of us are us, and what bits are invading germs and viruses? How different are human immune systems from the immune systems of other creatures? And is the immune system so often the target of sketchy medical advice? Those questions and more, this week in our conversation with author Idan Ben-Barak about his book "Why Aren't We Dead Yet?: The Survivor’s Guide to the Immune System".