Nav: Home

NASA team studies middle-aged sun by tracking motion of Mercury

January 18, 2018

Like the waistband of a couch potato in midlife, the orbits of planets in our solar system are expanding. It happens because the Sun's gravitational grip gradually weakens as our star ages and loses mass. Now, a team of NASA and MIT scientists has indirectly measured this mass loss and other solar parameters by looking at changes in Mercury's orbit.

The new values improve upon earlier predictions by reducing the amount of uncertainty. That's especially important for the rate of solar mass loss, because it's related to the stability of G, the gravitational constant. Although G is considered a fixed number, whether it's really constant is still a fundamental question in physics.

"Mercury is the perfect test object for these experiments because it is so sensitive to the gravitational effect and activity of the Sun," said Antonio Genova, the lead author of the study published in Nature Communications and a Massachusetts Institute of Technology researcher working at NASA's Goddard Space Flight Center in Greenbelt, Maryland.

The study began by improving Mercury's charted ephemeris -- the road map of the planet's position in our sky over time. For that, the team drew on radio tracking data that monitored the location of NASA's MESSENGER spacecraft while the mission was active. Short for Mercury Surface, Space Environment, Geochemistry, and Ranging, the robotic spacecraft made three flybys of Mercury in 2008 and 2009 and orbited the planet from March 2011 through April 2015. The scientists worked backward, analyzing subtle changes in Mercury's motion as a way of learning about the Sun and how its physical parameters influence the planet's orbit.

For centuries, scientists have studied Mercury's motion, paying particular attention to its perihelion, or the closest point to the Sun during its orbit. Observations long ago revealed that the perihelion shifts over time, called precession. Although the gravitational tugs of other planets account for most of Mercury's precession, they don't account for all of it.

The second-largest contribution comes from the warping of space-time around the Sun because of the star's own gravity, which is covered by Einstein's theory of general relativity. The success of general relativity in explaining most of Mercury's remaining precession helped persuade scientists that Einstein's theory was right.

Other, much smaller contributions to Mercury's precession, are attributed to the Sun's interior structure and dynamics. One of those is the Sun's oblateness, a measure of how much it bulges at the middle -- its own version of a "spare tire" around the waist -- rather than being a perfect sphere. The researchers obtained an improved estimate of oblateness that is consistent with other types of studies.

The researchers were able to separate some of the solar parameters from the relativistic effects, something not accomplished by earlier studies that relied on ephemeris data. The team developed a novel technique that simultaneously estimated and integrated the orbits of both MESSENGER and Mercury, leading to a comprehensive solution that includes quantities related to the evolution of Sun's interior and to relativistic effects.

"We're addressing long-standing and very important questions both in fundamental physics and solar science by using a planetary-science approach," said Goddard geophysicist Erwan Mazarico. "By coming at these problems from a different perspective, we can gain more confidence in the numbers, and we can learn more about the interplay between the Sun and the planets."

The team's new estimate of the rate of solar mass loss represents one of the first times this value has been constrained based on observations rather than theoretical calculations. From the theoretical work, scientists previously predicted a loss of one-tenth of a percent of the Sun's mass over 10 billion years; that's enough to reduce the star's gravitational pull and allow the orbits of the planets to spread by about half an inch, or 1.5 centimeters, per year per AU (an AU, or astronomical unit, is the distance between Earth and the Sun: about 93 million miles).

The new value is slightly lower than earlier predictions but has less uncertainty. That made it possible for the team to improve the stability of G by a factor of 10, compared to values derived from studies of the motion of the Moon.

"The study demonstrates how making measurements of planetary orbit changes throughout the solar system opens the possibility of future discoveries about the nature of the Sun and planets, and indeed, about the basic workings of the universe," said co-author Maria Zuber, vice president for research at MIT.
-end-


NASA/Goddard Space Flight Center

Related Solar System Articles:

From rocks in Colorado, evidence of a 'chaotic solar system'
Plumbing a 90 million-year-old layer cake of sedimentary rock in Colorado, a team of scientists from the University of Wisconsin-Madison and Northwestern University has found evidence confirming a critical theory of how the planets in our solar system behave in their orbits around the sun.
Why are there different 'flavors' of iron around the Solar System?
New work from Carnegie's Stephen Elardo and Anat Shahar shows that interactions between iron and nickel under the extreme pressures and temperatures similar to a planetary interior can help scientists understand the period in our Solar System's youth when planets were forming and their cores were created.
Does our solar system have an undiscovered planet? You can help astronomers find out
ASU's Adam Schneider and colleagues are hunting for runaway worlds in the space between stars, and citizen scientists can join the search with a new NASA-funded website.
Rare meteorites challenge our understanding of the solar system
Researchers have discovered minerals from 43 meteorites that landed on Earth 470 million years ago.
New evidence on the formation of the solar system
International research involving a Monash University scientist is using new computer models and evidence from meteorites to show that a low-mass supernova triggered the formation of our solar system.
Planet Nine could spell doom for solar system
The solar system could be thrown into disaster when the sun dies if the mysterious 'Planet Nine' exists, according to research from the University of Warwick.
Theft behind Planet 9 in our solar system
Through a computer-simulated study, astronomers at Lund University in Sweden show that it is highly likely that the so-called Planet 9 is an exoplanet.
Studying the solar system with NASA's Webb Telescope
NASA's James Webb Space Telescope will look across vast distances to find the earliest stars and galaxies and study the atmospheres of mysterious worlds orbiting other stars.
'This solar system isn't big enough for the both of us.' -- Jupiter
It's like something out of an interplanetary chess game. Astrophysicists at the University of Toronto have found that a close encounter with Jupiter about four billion years ago may have resulted in another planet's ejection from the Solar System altogether.
IBEX sheds new light on solar system boundary
In 14 papers published in the October 2015 Astrophysical Journal Supplement, scientists present findings from NASA's Interstellar Boundary Explorer, or IBEX, mission providing the most definitive analyses, theories and results about local interstellar space to date.

Related Solar System Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...