Nav: Home

Using data mining to make sense of climate change

January 18, 2018

Big data and data mining have provided several breakthroughs in fields such as health informatics, smart cities and marketing. The same techniques, however, have not delivered consistent key findings for climate change.

There are a few reasons why. The main one is that previous data mining work in climate science, and in particular in the analysis of climate teleconnections, has relied on methods that offer rather simplistic "yes or no" answers.  

"It's not that simple in climate," said Annalisa Bracco, a professor in Georgia Tech's School of Earth and Atmospheric Sciences. "Even weak connections between very different regions on the globe may result from an underlying physical phenomenon. Imposing thresholds and throwing out weak connections would halt everything. Instead, a climate scientist's expertise is the key step to finding commonalities across very different data sets or fields to explore how robust they are."

And with millions of data points spread out around the globe, Bracco said current models rely too much on human expertise to make sense of the output. She and her colleagues wanted to develop a methodology that depends more on actual data rather than a researcher's interpretation.

That's why the Georgia Tech team has developed a new way of mining data from climate data sets that is more self-contained than traditional tools. The methodology brings out commonalities of data sets without as much expertise from the user, allowing scientists to trust the data and get more robust -- and transparent -- results.

The methodology is open source and currently available to scientists around the world. The Georgia Tech researchers are already using it to explore sea surface temperature and cloud field data, two aspects that profoundly affect the planet's climate.

"There are so many factors -- cloud data, aerosols and wind fields, for example -- that interact to generate climate and drive climate change," said Athanasios Nenes, another College of Sciences climate professor on the project. "Depending on the model aspect you focus on, they can reproduce climate features effectively -- or not at all. Sometimes it is very hard to tell if one model is really better than another or if it predicts climate for the right reasons."

Nenes says the Georgia Tech methodology looks at everything in a more robust way, breaking the bottleneck that is typical of other model evaluation and analysis algorithms. The methodology, he says, can be used for observations, and scientists don't need to know anything about computer code and models.

"The methodology reduces the complexity of millions of data points to the bare essentials --sometimes as few as 10 regions that interact with each other," said Nenes. "We need to have tools that reduce the complexity of model output to understand them better and evaluate if they are providing the correct results for the right reasons."

To develop the methodology, the climate scientists partnered with Constantine Dovrolis and other data scientists in Georgia Tech's College of Computing. Dovrolis said it's exciting to apply algorithmic and computational thinking in problems that affect everyone in major ways, such as global warming."

"Climate science is a 'data-heavy' discipline with many intellectually interesting questions that can benefit from computational modeling and prediction," said Dovrolis, a professor in the School of Computer Science, "Cross-disciplinary collaborations are challenging at first -- every discipline has its own language, preferred approach and research culture -- but they can be quite rewarding at the end."
-end-
The paper, "Advancing climate science with knowledge-discovery through data mining," is published in Climate and Atmospheric Science, a Nature journal.

The development of the methodology was supported by the U.S. Department of Energy (grant DE-SC0007143) and the National Science Foundation (grant DMS-1049095). Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the sponsors.

Georgia Institute of Technology

Related Climate Change Articles:

The black forest and climate change
Silver and Douglas firs could replace Norway spruce in the long run due to their greater resistance to droughts.
For some US counties, climate change will be particularly costly
A highly granular assessment of the impacts of climate change on the US economy suggests that each 1°Celsius increase in temperature will cost 1.2 percent of the country's gross domestic product, on average.
Climate change label leads to climate science acceptance
A new Cornell University study finds that labels matter when it comes to acceptance of climate science.
Was that climate change?
A new four-step 'framework' aims to test the contribution of climate change to record-setting extreme weather events.
It's more than just climate change
Accurately modeling climate change and interactive human factors -- including inequality, consumption, and population -- is essential for the effective science-based policies and measures needed to benefit and sustain current and future generations.
Climate change scientists should think more about sex
Climate change can have a different impact on male and female fish, shellfish and other marine animals, with widespread implications for the future of marine life and the production of seafood.
Climate change prompts Alaska fish to change breeding behavior
A new University of Washington study finds that one of Alaska's most abundant freshwater fish species is altering its breeding patterns in response to climate change, which could impact the ecology of northern lakes that already acutely feel the effects of a changing climate.
Uncertainties related to climate engineering limit its use in curbing climate change
Climate engineering refers to the systematic, large-scale modification of the environment using various climate intervention techniques.
Public holds polarized views about climate change and trust in climate scientists
There are gaping divisions in Americans' views across every dimension of the climate debate, including causes and cures for climate change and trust in climate scientists and their research, according to a new Pew Research Center survey.
The psychology behind climate change denial
In a new thesis in psychology, Kirsti Jylhä at Uppsala University has studied the psychology behind climate change denial.

Related Climate Change Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#530 Why Aren't We Dead Yet?
We only notice our immune systems when they aren't working properly, or when they're under attack. How does our immune system understand what bits of us are us, and what bits are invading germs and viruses? How different are human immune systems from the immune systems of other creatures? And is the immune system so often the target of sketchy medical advice? Those questions and more, this week in our conversation with author Idan Ben-Barak about his book "Why Aren't We Dead Yet?: The Survivor’s Guide to the Immune System".