Nav: Home

Controlling nanoscale DNA robots from the macroscale

January 18, 2018

By powering a DNA nanorobotic arm with electric fields, scientists have achieved precise nano-scale movement that is at least five orders of magnitude faster than previously reported for DNA-driven robotic systems. Their miniscule self-assembling robot may serve as a platform for new inventions in digital memory, cargo transfer and 3-D printing of molecules, says Björn Högberg in a related Perspective. Nanoscale movement in the natural world, such as the self-assembly of DNA, has helped inspire the creation of autonomous nanomachines with far-reaching applications, from biotechnology to computation. However, relying on DNA's molecular cues to instigate movement in these devices can be a slow and inefficient process, which is why Enzo Kopperger and colleagues used a different approach to mobilize their DNA nanorobots: the application of electric fields in a manner similar to how electrophoresis moves and separates large DNA molecules. With this new power source, Kopperger et al.'s robotic system - comprised of a square base and a protruding "arm" all made of DNA double helices - could point and rotate in fixed directions at a much higher speed than when relying on DNA molecular forces alone. The movement resembles the gearshift of a car, with short, single-stranded DNA serving as "latches" to grab and lock the arm into predefined places. The authors also demonstrated their DNA nanorobot's ability to transport nanoparticles back and forth. The fast, computer-controlled and scalable robotic system can be adapted to include more robotic arms, perhaps bringing the research field a step closer to realizing a nanorobotic production factory, the authors say.
-end-


American Association for the Advancement of Science

Related Dna Articles:

Penn State DNA ladders: Inexpensive molecular rulers for DNA research
New license-free tools will allow researchers to estimate the size of DNA fragments for a fraction of the cost of currently available methods.
It is easier for a DNA knot...
How can long DNA filaments, which have convoluted and highly knotted structure, manage to pass through the tiny pores of biological systems?
How do metals interact with DNA?
Since a couple of decades, metal-containing drugs have been successfully used to fight against certain types of cancer.
Electrons use DNA like a wire for signaling DNA replication
A Caltech-led study has shown that the electrical wire-like behavior of DNA is involved in the molecule's replication.
Switched-on DNA
DNA, the stuff of life, may very well also pack quite the jolt for engineers trying to advance the development of tiny, low-cost electronic devices.
Researchers are first to see DNA 'blink'
Northwestern University biomedical engineers have developed imaging technology that is the first to see DNA 'blink,' or fluoresce.
Finding our way around DNA
A Salk team developed a tool that maps functional areas of the genome to better understand disease.
A 'strand' of DNA as never before
In a carefully designed polymer, researchers at the Institute of Physical Chemistry of the Polish Academy of Sciences have imprinted a sequence of a single strand of DNA.
Doubling down on DNA
The African clawed frog X. laevis genome contains two full sets of chromosomes from two extinct ancestors.
'Poring over' DNA
Church's team at Harvard's Wyss Institute for Biologically Inspired Engineering and the Harvard Medical School developed a new electronic DNA sequencing platform based on biologically engineered nanopores that could help overcome present limitations.

Related Dna Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#530 Why Aren't We Dead Yet?
We only notice our immune systems when they aren't working properly, or when they're under attack. How does our immune system understand what bits of us are us, and what bits are invading germs and viruses? How different are human immune systems from the immune systems of other creatures? And is the immune system so often the target of sketchy medical advice? Those questions and more, this week in our conversation with author Idan Ben-Barak about his book "Why Aren't We Dead Yet?: The Survivor’s Guide to the Immune System".