Nav: Home

Packing a genome, step-by-step

January 18, 2018

Genome folding now has a playbook.

A new step-by-step account spells out in minute-time resolution how cells rapidly pack long tangles of chromosomes into the tiny, tightly wound bundles needed for cell division. Cells reel chromosomes into loops, and then wind the loops into spiral staircase structures, Howard Hughes Medical Institute researchers report January 18, 2018, in the journal Science.

"This is the most fundamental process of genetics," says study coauthor and Howard Hughes Medical Institute (HHMI) Investigator Job Dekker. If packing goes awry, chromosomes can break and end up in the wrong place - a hallmark of cancer.

The new work solves a biological mystery that dates back more than a century, Dekker says, when scientists first spied chromosomes under the microscope.

Most of the time, our cells' chromosomes are strung out in the nucleus like an unraveled skein of yarn. The diffuse strands look like little blobs, says Dekker, a biochemist at the University of Massachusetts Medical School. But during mitosis, when our cells prepare to split in two and hand over genetic material to daughter cells, chromosomes coil up, cramming roughly six feet of DNA into microscopic packages. Cells can easily deliver these condensed, X-shaped nuggets to their daughters, Dekker says. Then, chromosomes crumple apart again, back into blobs.

Scientists had previously figured out how cells structured these loose, diffuse chromosomes. And four years ago, Dekker and colleagues reported the structure of tightly packed chromosomes - an array of consecutive loops. But, he says, the big question was how cells transitioned from one state to the other and back again - and so quickly, too. "The whole process happens in 10 to 15 minutes," he says. "It's unbelievable."

It has also been a matter of fierce debate. Some researchers believed that cells twisted their chromosomes into helices, while others thought cells simply stuck with the loops.

Dekker, along with William Earnshaw of the University of Edinburgh's Wellcome Trust Centre for Cell Biology, Leonid Mirny of the Massachusetts Institute of Technology, and colleagues used a genetic trick to synchronize chicken cells in the lab so that they all began packing their chromosomes simultaneously. Then the scientists took snapshots of the chromosomes at different time points.

Within minutes, the researchers could see Jell-O-like globs of DNA arrange into ropey rods.

Next, the team cemented the chromosomes in place, affixing together all the spots where individual strands touched. Analyzing the DNA sequence of these junctions gave the team clues about the chromosomes' architecture. "If you know which part of the rope is next to which, you can reconstruct its 3-D structure," Dekker says.

Those data, along with computer simulations of the folding process, let the researchers test predictions about how chromosomes transition from blob to rod. "Because the structures are so totally different, you think, 'Oh, that must be a highly complicated and difficult process,' " Dekker says.

But actually, it all happens in a few simple steps, the team discovered. Small, ring-like protein motors called condensins push yards of chromosomes through the rings, forming loops. Condensin II weaves the chromosomes into a chain of wide loops, and then another protein, condensin I, splits the big loops into smaller ones. Then the loops, hundreds per chromosome, twist around like a spiral staircase.

Such an elegant, efficient packing strategy may explain how cells can so reliably bundle their chromosomes over and over again, every time the cell divides, Dekker says.

The new work promises to unify two formerly conflicting views of the mitotic chromosome. Chromosomes can be arranged in an array of loops, but they can also be helical, Dekker says. "I find this extremely satisfying," he says. "I always aim for consilience. If you're confronted with datasets that supposedly tell you two different things, can you find a way for them both to be right?"
-end-


Howard Hughes Medical Institute

Related Dna Articles:

In one direction or the other: That is how DNA is unwound
DNA is like a book, it needs to be opened to be read.
DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.
A new spin on DNA
For decades, researchers have chased ways to study biological machines.
From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.
Self-healing DNA nanostructures
DNA assembled into nanostructures such as tubes and origami-inspired shapes could someday find applications ranging from DNA computers to nanomedicine.
DNA design that anyone can do
Researchers at MIT and Arizona State University have designed a computer program that allows users to translate any free-form drawing into a two-dimensional, nanoscale structure made of DNA.
DNA find
A Queensland University of Technology-led collaboration with University of Adelaide reveals that Australia's pint-sized banded hare-wallaby is the closest living relative of the giant short-faced kangaroos which roamed the continent for millions of years, but died out about 40,000 years ago.
DNA structure impacts rate and accuracy of DNA synthesis
DNA sequences with the potential to form unusual conformations, which are frequently associated with cancer and neurological diseases, can in fact slow down or speed up the DNA synthesis process and cause more or fewer sequencing errors.
Changes in mitochondrial DNA control how nuclear DNA mutations are expressed in cardiomyopathy
Differences in the DNA within the mitochondria, the energy-producing structures within cells, can determine the severity and progression of heart disease caused by a nuclear DNA mutation.
Switching DNA and RNA on and off
DNA and RNA are naturally polarised molecules. Scientists believe that these molecules have an in-built polarity that can be reoriented or reversed fully or in part under an electric field.
More Dna News and Dna Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#540 Specialize? Or Generalize?
Ever been called a "jack of all trades, master of none"? The world loves to elevate specialists, people who drill deep into a single topic. Those people are great. But there's a place for generalists too, argues David Epstein. Jacks of all trades are often more successful than specialists. And he's got science to back it up. We talk with Epstein about his latest book, "Range: Why Generalists Triumph in a Specialized World".
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.