Nav: Home

Certain flu virus mutations may compensate for fitness costs of other mutations

January 18, 2018

Seasonal flu viruses continually undergo mutations that help them evade the human immune system, but some of these mutations can reduce a virus's potency. According to new research published in PLOS Pathogens, certain mutations in the genome of influenza A may help counteract the weakening effects of other mutations.

Influenza A causes tens of thousands of deaths in the U.S. every year, despite vaccination efforts. It persists, in large part, due to continual changes in the sequence of amino acid "building blocks" that make up the viral protein hemagglutinin, enabling it to avoid recognition and removal by immune system antibodies. Many of these mutations can reduce a virus's fitness--its ability to make more copies of itself--raising the question of how viruses compensate to recover their mojo.

Ivan Kosik of the National Institute of Allergy and Infectious Diseases, Maryland, and colleagues investigated hemagglutinin mutations to better understand the mechanisms by which influenza A viruses maintain fitness despite continual mutation. They focused on influenza A variants with mutations that enabled them to escape antibodies from mice, guinea pigs, or chickens.

To identify the accumulated mutations that restored viral fitness, the researchers sequenced the viral RNA using a supersensitive method called PrimerID sequencing, which enables tracking of all individual viral genomes so that any relevant mutations can be spotted. They found several mutations of particular interest that add a new sugar molecule to the hemagglutinin, thus creating a novel "N-linked glycan" site.

How does this help the virus to replicate? It turns out, that the new sugar allows the virus to regain "Goldilocks" binding to the host cell: not too weak, but not too tight either. In escaping the immune system, the new mutations can inadvertently disrupt this golden binding point, which can be remedied by adding a sugar molecules in the just the part of the hemagglutinin.

These findings improve understanding of the mechanisms that make flu outbreaks so difficult to prevent, and inform efforts to design more effective flu vaccines that are less easily thwarted by continual mutation. The results also demonstrate the value of PrimerID sequencing to provide a high-resolution view of all the mutations present in a given viral population--something that conventional deep sequencing approaches cannot do as accurately or efficiently. This level of understanding is necessary to keep up with the flu, which despite is miniscule size, has managed to outsmart humans trying to foil the havoc it wreak each flu season.
-end-
In your coverage please use this URL to provide access to the freely available article in PLOS Pathogens: http://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1006796

Citation: Kosik I, Ince WL, Gentles LE, Oler AJ, Kosikova M, Angel M, et al. (2018) Influenza A virus hemagglutinin glycosylation compensates for antibody escape fitness costs. PLoS Pathog 14(1): e1006796. https://doi.org/10.1371/journal.ppat.1006796

Funding: All work funded directly by US gov?t. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

PLOS

Related Immune System Articles:

Too much salt weakens the immune system
A high-salt diet is not only bad for one's blood pressure, but also for the immune system.
Parkinson's and the immune system
Mutations in the Parkin gene are a common cause of hereditary forms of Parkinson's disease.
How an immune system regulator shifts the balance of immune cells
Researchers have provided new insight on the role of cyclic AMP (cAMP) in regulating the immune response.
Immune system upgrade
Theoretically, our immune system could detect and kill cancer cells.
Using the immune system as a defence against cancer
Research published today in the British Journal of Cancer has found that a naturally occurring molecule and a component of the immune system that can successfully target and kill cancer cells, can also encourage immunity against cancer resurgence.
First impressions go a long way in the immune system
An algorithm that predicts the immune response to a pathogen could lead to early diagnosis for such diseases as tuberculosis
Filming how our immune system kill bacteria
To kill bacteria in the blood, our immune system relies on nanomachines that can open deadly holes in their targets.
Putting the break on our immune system's response
Researchers have discovered how a tiny molecule known as miR-132 acts as a 'handbrake' on our immune system -- helping us fight infection.
Decoding the human immune system
For the first time ever, researchers are comprehensively sequencing the human immune system, which is billions of times larger than the human genome.
Masterswitch discovered in body's immune system
Scientists have discovered a critical part of the body's immune system with potentially major implications for the treatment of some of the most devastating diseases affecting humans.
More Immune System News and Immune System Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Dispatch 3: Shared Immunity
More than a million people have caught Covid-19, and tens of thousands have died. But thousands more have survived and recovered. A week or so ago (aka, what feels like ten years in corona time) producer Molly Webster learned that many of those survivors possess a kind of superpower: antibodies trained to fight the virus. Not only that, they might be able to pass this power on to the people who are sick with corona, and still in the fight. Today we have the story of an experimental treatment that's popping up all over the country: convalescent plasma transfusion, a century-old procedure that some say may become one of our best weapons against this devastating, new disease.   If you have recovered from Covid-19 and want to donate plasma, national and local donation registries are gearing up to collect blood.  To sign up with the American Red Cross, a national organization that works in local communities, head here.  To find out more about the The National COVID-19 Convalescent Plasma Project, which we spoke about in our episode, including information on clinical trials or plasma donation projects in your community, go here.  And if you are in the greater New York City area, and want to donate convalescent plasma, head over to the New York Blood Center to sign up. Or, register with specific NYC hospitals here.   If you are sick with Covid-19, and are interested in participating in a clinical trial, or are looking for a plasma donor match, check in with your local hospital, university, or blood center for more; you can also find more information on trials at The National COVID-19 Convalescent Plasma Project. And lastly, Tatiana Prowell's tweet that tipped us off is here. This episode was reported by Molly Webster and produced by Pat Walters. Special thanks to Drs. Evan Bloch and Tim Byun, as well as the Albert Einstein College of Medicine.  Support Radiolab today at Radiolab.org/donate.