Nav: Home

Study finds shift in patterns of glutamate and GABA in visuospatial working memory network

January 18, 2018

Philadelphia, January 18, 2018 - A new study in Biological Psychiatry has characterized the patterns of brain neurotransmitters glutamate and GABA in a network of regions that temporarily maintain and process visual information about the location of objects in space, a cognitive ability referred to as visuospatial working memory. The study, conducted by researchers at the University of Pittsburgh, reports that the patterns are altered in people with schizophrenia, suggesting a potential explanation for the impairments in visuospatial working memory that characterize people with the disorder.

The new findings suggest that the precise balance between the excitatory, or "accelerator", and inhibitory, or "brake", neurotransmitters might be shifted in certain regions in schizophrenia. Optimal function of visuospatial working memory requires a precise balance of the activity between glutamate and GABA, so the alterations may be what's leading to disrupted visuospatial working memory in the disorder.

In the study, first author Gil Hoftman, MD, Ph. D., and colleagues first mapped the normal levels of gene products involved in the production and use of glutamate and GABA in brain tissue from people unaffected by schizophrenia. They examined four regions of the cortex--the outermost layers of the brain where high level thinking takes place--that form the network responsible for visuospatial working memory. Levels of the gene products appeared in distinct patterns across the regions. Compared to the normal brain, the levels of the gene products were altered in the cortical regions in schizophrenia--increased or decreased in some regions, and unchanged in others.

According to David Lewis, MD, who led the study, the results suggest two new insights into the brain mechanics of working memory and how it goes wrong in schizophrenia. "First, in the normal human brain, the relative weighting of markers of excitatory and inhibitory neurotransmission differ markedly across the distributed cortical network that mediates working memory," said Dr. Lewis. "Second, in schizophrenia this weighting is disrupted by region-specific alterations in markers of both excitatory and inhibitory neurotransmission," he added.

The findings suggest that multiple disruptions may occur as information passes through the different regions in the network. "This paper highlights that differences in the cortical abnormalities across brain regions may give rise to the profile of symptoms associated with schizophrenia," said Dr. John Krystal, Editor of Biological Psychiatry.
-end-
Notes for editors

The article is "Altered Gradients of Glutamate and GABA Transcripts in the Cortical Visuospatial Working Memory Network in Schizophrenia," by Gil D. Hoftman, Samuel J. Dienel, Holly H. Bazmi, Yun Zhang, Kehui Chen, and David A. Lewis (http://dx.doi.org/10.1016/j.biopsych.2017.11.029). It appears in Biological Psychiatry, published by Elsevier.

Copies of this paper are available to credentialed journalists upon request; please contact Rhiannon Bugno at Biol.Psych@UTSouthwestern.edu or +1 214 648 0880. Journalists wishing to interview the authors may contact David Lewis, MD, at lewisda@upmc.edu.

The authors' affiliations and disclosures of financial and conflicts of interests are available in the article.

John H. Krystal, MD, is Chairman of the Department of Psychiatry at the Yale University School of Medicine, Chief of Psychiatry at Yale-New Haven Hospital, and a research psychiatrist at the VA Connecticut Healthcare System. His disclosures of financial and conflicts of interests are available here.

About Biological Psychiatry

Biological Psychiatry is the official journal of the Society of Biological Psychiatry, whose purpose is to promote excellence in scientific research and education in fields that investigate the nature, causes, mechanisms and treatments of disorders of thought, emotion, or behavior. In accord with this mission, this peer-reviewed, rapid-publication, international journal publishes both basic and clinical contributions from all disciplines and research areas relevant to the pathophysiology and treatment of major psychiatric disorders.

The journal publishes novel results of original research which represent an important new lead or significant impact on the field, particularly those addressing genetic and environmental risk factors, neural circuitry and neurochemistry, and important new therapeutic approaches. Reviews and commentaries that focus on topics of current research and interest are also encouraged.

Biological Psychiatry is one of the most selective and highly cited journals in the field of psychiatric neuroscience. It is ranked 6th out of 142 Psychiatry titles and 10th out of 258 Neurosciences titles in the Journal Citations Reports® published by Thomson Reuters. The 2016 Impact Factor score for Biological Psychiatry is 11.412.

About Elsevier

Elsevier is a global information analytics business that helps institutions and professionals progress science, advance healthcare and improve performance for the benefit of humanity. Elsevier provides digital solutions and tools in the areas of strategic research management, R&D performance, clinical decision support, and professional education; including ScienceDirect, Scopus, Scival, ClinicalKey and Sherpath. Elsevier publishes over 2,500 digitized journals, including The Lancet and Cell, more than 35,000 e-book titles and many iconic reference works, including Gray's Anatomy. Elsevier is part of RELX Group, a global provider of information and analytics for professionals and business customers across industries. http://www.elsevier.com

Media contact

Rhiannon Bugno
Editorial Office, Biological Psychiatry
1-214-648-0880
Biol.Psych@UTSouthwestern.edu

Elsevier

Related Schizophrenia Articles:

Dietary supplement may help with schizophrenia
A dietary supplement, sarcosine, may help with schizophrenia as part of a holistic approach complementing antipsychotic medication, according to a UCL researcher.
Schizophrenia: Adolescence is the game-changer
Schizophrenia may be related to the deletion syndrome. However, not everyone who has the syndrome necessarily develops psychotic symptoms.
Study suggests overdiagnosis of schizophrenia
In a small study of patients referred to the Johns Hopkins Early Psychosis Intervention Clinic (EPIC), Johns Hopkins Medicine researchers report that about half the people referred to the clinic with a schizophrenia diagnosis didn't actually have schizophrenia.
The ways of wisdom in schizophrenia
Researchers at UC San Diego School of Medicine report that persons with schizophrenia scored lower on a wisdom assessment than non-psychiatric comparison participants, but that there was considerable variability in levels of wisdom, and those with higher scores displayed fewer psychotic symptoms.
Recognizing the uniqueness of different individuals with schizophrenia
Individuals diagnosed with schizophrenia differ greatly from one another. Researchers from Radboud university medical center, along with colleagues from England and Norway, have demonstrated that very few identical brain differences are shared amongst different patients.
Resynchronizing neurons to erase schizophrenia
Today, a decisive step in understanding schizophrenia has been taken.
Genetics researchers close in on schizophrenia
Researchers at the MRC Centre for Neuropsychiatric Genetics and Genomics at Cardiff University have discovered 50 new gene regions that increase the risk of developing schizophrenia.
Looking for the origins of schizophrenia
Schizophrenia may be related to neurodevelopment changes, including brain's inability to create the appropriate vascular system, according to new study resulted from a partnership between the D'Or Institute for Research and Education, the University of Chile and the Federal University of Rio de Janeiro (UFRJ).
Researchers uncover novel mechanism behind schizophrenia
An international team of researchers led by a Case Western Reserve University School of Medicine scientist has uncovered a novel mechanism in which a protein--neuregulin 3--controls how key neurotransmitters are released in the brain during schizophrenia.
A new genetic marker for schizophrenia
Japanese scientists find a rare genetic variant that shows strong association with schizophrenia.
More Schizophrenia News and Schizophrenia Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#540 Specialize? Or Generalize?
Ever been called a "jack of all trades, master of none"? The world loves to elevate specialists, people who drill deep into a single topic. Those people are great. But there's a place for generalists too, argues David Epstein. Jacks of all trades are often more successful than specialists. And he's got science to back it up. We talk with Epstein about his latest book, "Range: Why Generalists Triumph in a Specialized World".
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.