Nav: Home

Temporary 'bathtub drains' in the ocean concentrate flotsam

January 18, 2018

An experiment featuring the largest flotilla of sensors ever deployed in a single area provides new insights into how marine debris, or flotsam, moves on the surface of the ocean.

The experiment conducted in the Gulf of Mexico near the site of the Deepwater Horizon oil spill placed hundreds of drifting sensors to observe how material moves on the ocean's surface. Rather than spread out, as current calculations would predict, many of them clumped together in a tight cluster.

The results hold promise for the cleanup of marine pollution and have wider implications for ocean science. The open-access paper was published the week of Jan. 16 in the Proceedings of the National Academy of Sciences.

"To observe floating objects spread out over a region the size of a city concentrate into a region smaller than a football stadium was just amazing," said first author Eric D'Asaro, a UW professor of oceanography. "We knew there would be some concentration, but the magnitude seen was quite stunning."

Textbook science would predict that material in the ocean would simply diffuse -- that is, move apart or flow with the currents. But recent research has begun to explore the role of oceanic fronts and vortexes, and a 2015 study showed that small-scale eddies push phytoplankton down to hundreds of feet below the water's surface.

The new study shows that such eddies can draw in flotsam from a wide area. If scientists could somehow observe or predict this funneling behavior, it might help to clean up oil spills or recover marine plastics and other floating debris.

"The hope is to apply this in ocean cleanup projects, but first we have to figure out how to observe or predict where these concentrations will occur," D'Asaro said.

The research was funded by the industry-backed Gulf of Mexico Research Initiative.

For the 2016 field campaign, co-author Tamay Özgökmen and his team at the University of Miami designed inexpensive drifting sensors that are built from biodegradable plastic so that hundreds can be deployed at a time. During a winter cruise, the team placed the instruments about 75 kilometers from the mouth of the Mississippi River, in an area where fresh, cold river water meets saltier, warmer and denser water from the Gulf of Mexico. The cruise deployed more than 1,000 drifters, making it the largest-ever deployment of individually-trackable ocean drifters in a single location to see how they behave as a group.

The experiment that's the focus of this study dropped 326 drifters in a grid with 1 kilometer spacing over the course of about 16 hours. Eight days later, roughly half the drifters were contained in a circle the size of 60 meters (200 feet), an area 400 times smaller than when they began. Underwater observations show a bulge of seawater plunging down simultaneously in this location.

"It is much like the spinning vortex that forms in a bathtub: Water sinks in a small region, but water from much larger region moves toward the vortex," D'Asaro said.

The drifters are buoyant and stayed floating on the surface. They remained clumped together for about 10 days and then slowly dispersed over the following weeks. Meanwhile the other half of the drifters simply spread out over an area of 100 kilometers, as traditional calculations would predict.

"This is probably how the vertical exchange in the ocean ultimately works," said second author Andrey Shcherbina, an oceanographer at the UW's Applied Physics Laboratory. "Even though we think about ocean mixing as a large-scale process, once we start looking closer we begin to realize that it might actually happen episodically, on very small scales, at select hotspots that flash here and there."

The findings also have wider implications for how the ocean behaves. If mixing happens at smaller scales, and less buoyant material gets sucked down into the vortex, then finer-grained models could better capture processes such as blooms of marine plants, carbon transport and water circulation.

"There have been increasing theoretical reasons to believe that something like this should happen, and some previous measurements which supported those ideas," D'Asaro said. "But I think this will be a landmark experiment, because it is so dramatic and easy to understand."
-end-
https://www.youtube.com/watch?v=kv26DdydegM

The project was part of the multi-institutional Consortium for Advanced Research on the Transport of Hydrocarbons in the Environment, based at the University of Miami. Other co-authors are Shuyi Chen at the UW; Jody Klymak at the University of Victoria; Jeroen Molemaker, James McWilliams and Roy Barkan at the University of California, Los Angeles; Guillaume Novelli, Cédric Guigand, Angelique Haza, Brian Haus and Edward Ryan at the University of Miami; Gregg Jacobs at the Naval Research Laboratory; Helga Huntley and A.D. Kirwan Jr. at the University of Delaware; Nathan Laxague at Columbia University; Falco Judt at the National Center for Atmospheric Research; and Andrew Poje at the College of Staten Island.

For more information, contact D'Asaro at 206-685-2982 or dasaro@uw.edu and Shcherbina at 206-897-1446 or ashcherbina@apl.washington.edu. See more photos from the deployment cruise

University of Washington

Related Sensors Articles:

Sensors detect disease markers in breath
A small, thin square of an organic plastic that can detect disease markers in breath or toxins in a building's air could soon be the basis of portable, disposable sensor devices.
Are your sensors spying on you?
Cyber experts at Newcastle University, UK, have revealed the ease with which malicious websites and installed apps can spy on us using just the information from the motion sensors in our mobile phones.
A novel method for the fabrication of active-matrix 3-D pressure sensors
A new study, affiliated with South Korea's Ulsan National Institute of Science and Technology (UNIST), developed a transistor-type active-matrix pressure sensor using foldable substrate and air-dielectric layer.
For female mosquitoes, two sets of odor sensors are better than one
A team of Vanderbilt biologists has found that the malaria mosquito has a second complete set of odor receptors that are specially tuned to human scents.
Optimized sensors to study learning and memory
Scientists at Max Planck Florida Institute for Neuroscience are working to understand how molecules send messages throughout the neuron.
Pioneering chip extends sensors' battery life
A low-cost chip that enables batteries in sensors to last longer, in some cases by over ten times, has been developed by engineers from the University of Bristol.
New sensors can detect single protein molecules
For the first time, MIT engineers have designed sensors that can detect single protein molecules as they are secreted by cells.
Contracts signed for ELT mirrors and sensors
At a ceremony today at ESO's Headquarters four contracts were signed for major components of the Extremely Large Telescope (ELT) that ESO is building.
Pain sensors specialized for specific sensations
Many pain-sensing nerves in the body are thought to respond to all types of 'painful events', but new UCL research in mice reveals that in fact most are specialized to respond to specific types such as heat, cold or mechanical pain.
3-D-printed organ-on-a-chip with integrated sensors
Researchers have made the first entirely 3-D-printed organ-on-a-chip with integrated sensing.

Related Sensors Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...