Collision resonances between ultracold atom and molecules visualized for the first time

January 18, 2019

For the first time, a team led by Prof. Jian-Wei Pan and Prof. Bo Zhao at the University of Science and Technology of China, have successfully observed scattering resonances between atoms and molecules at ultralow temperatures, shedding light on the quantum nature of atom-molecule interactions that have so far only been discussed in theory. These observations greatly aid in the advancement of ultracold polar molecules and ultracold chemical physics. The new insights inform several other disciplines, such as designing high precision clocks, powerful microscopes, biological compasses and super-powerful quantum computers.

The field of chemical physics, a subcategory of quantum chemistry, has long been focusing on understanding the interactions of atoms and molecules at their very basic levels. Specifically, the aim has been to elucidate the scattering resonances, a remarkable quantum phenomenon that is expected to be a routine rather than an exception at temperatures near absolute zero. Specific to this research, the focus has been an understanding of scattering resonances of heavy molecules at ultracold temperatures, conditions under which particles move so slowly that one has enough time to both investigate and control their structure and motion with either electric or magnetic fields.

The first-of-its-kind study is published in the journal Science this week. It describes a specific type of interaction between atoms and molecules, namely potassium-40 (40K) atoms and sodium-23-potassium-40 (23Na40K) molecules. This interaction was taking place at ultralow temperatures and was manipulated by a magnetic field. The authors were thereby able to observe the specific scattering resonances, between the aforementioned atoms and molecules, which was so far only theorized.

"The molecules are heavy, and the structure of their energy field is very complex, which may result in a large amount of atom-molecule resonances," according to Bo Zhao. "Theory cannot predict the positions of these atom-molecule resonances. In fact, it is unclear whether the atom-molecule resonances at ultracold temperatures are resolvable and observable prior to our work," he adds.

The news findings offer knowledge that can be applied to better understand other atom-molecule interactions. The USTC team has devised a tool that can accurately monitor particle behavior so that a plethora of other interactions and dynamics can be visualized rather than theorized.

In their future endeavors, the team aims to explore even more parameters in order to understand them. "The next step is to measure more resonances and try to understand them. Our hope is to collaborate with theoreticians and find an accurate and predictive model that can understand and predict the atom-molecule scattering at ultralow temperatures. This is the ultimate gold of studying ultracold collisions involving molecules," according to Zhao.
-end-


University of Science and Technology of China

Related Molecules Articles from Brightsurf:

Finally, a way to see molecules 'wobble'
Researchers at the University of Rochester and the Fresnel Institute in France have found a way to visualize those molecules in even greater detail, showing their position and orientation in 3D, and even how they wobble and oscillate.

Water molecules are gold for nanocatalysis
Nanocatalysts made of gold nanoparticles dispersed on metal oxides are very promising for the industrial, selective oxidation of compounds, including alcohols, into valuable chemicals.

Water molecules dance in three
An international team of scientists has been able to shed new light on the properties of water at the molecular level.

How molecules self-assemble into superstructures
Most technical functional units are built bit by bit according to a well-designed construction plan.

Breaking down stubborn molecules
Seawater is more than just saltwater. The ocean is a veritable soup of chemicals.

Shaping the rings of molecules
Canadian chemists discover a natural process to control the shape of 'macrocycles,' molecules of large rings of atoms, for use in pharmaceuticals and electronics.

The mysterious movement of water molecules
Water is all around us and essential for life. Nevertheless, research into its behaviour at the atomic level -- above all how it interacts with surfaces -- is thin on the ground.

Spectroscopy: A fine sense for molecules
Scientists at the Laboratory for Attosecond Physics have developed a unique laser technology for the analysis of the molecular composition of biological samples.

Looking at the good vibes of molecules
Label-free dynamic detection of biomolecules is a major challenge in live-cell microscopy.

Colliding molecules and antiparticles
A study by Marcos Barp and Felipe Arretche from Brazil published in EPJ D shows a model of the interaction between positrons and simple molecules that is in good agreement with experimental results.

Read More: Molecules News and Molecules Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.