Purely organic hole transporter

January 18, 2021

Durable, high-performing perovskite solar cells also require durable, high-performing charge-transporting layers. Scientists have developed the first organic hole transporter that does not need a dopant to attain high charge mobility and stability. According to the study published in the journal Angewandte Chemie, this novel hole-transporting layer outperforms reference materials and protects the perovskite organic cell from air humidity.

In perovskite solar cells, the perovskite light absorption layer is sandwiched between two charge-transporting layers, which collect the generated holes and electrons and transport them to the electrodes. These charge transportation layers boost the power conversion efficiency of the cells and are critical for maintaining air stability.

State-of-the-art hole transporters consist of an organic material called spiro-OMeTAD. However, to promote smooth charge-carrier mobility, they need hygroscopic additives as dopants, which reduce the stability of the perovskites in humid air.

Yongzhen Wu and colleagues from the East China University of Science and Technology are exploring flat, aromatic, nitrogen-containing compounds called quinoxalines as hole transporters. The scientists prepared two novel quinoxalines that contained additional sulfur-bearing entities called thiophenes. The idea was that the energy levels of the thiophene-containing structures matched those of the perovskite layer and enabled efficient hole extraction.

In one of the quinoxalines, the thiophenes were able to rotate more or less freely, while in the other one, the thiophenes were fused and could not rotate. Both quinoxalines formed thin, crystalline films, which were good hole extractors, but only those with the fused thiophene rings also formed well-stacked crystalline layers.

The scientists observed over 21 % power conversion efficiency for perovskite solar cells containing the novel hole-transporting material. These cells outperformed reference cells containing the doped spiro-OMeTAD.

The authors also found that the devices made with the new material were more durable than those containing the doped reference materials. The dopant-free devices "maintained a dark and uniform shiny appearance within 30 days," the scientists wrote, whereas the doped spiro-OMeTAD-containing devices "apparently faded".

The quinoxaline-containing perovskite solar cells also resisted humid air, whereas the performance of the reference cells declined fast. The researchers concluded that the novel material not only enables, hole extraction and transportation, but it also protects the perovskite-based solar cell from moisture.
-end-
About the Author

Dr. Yongzhen Wu is a Professor at the Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China. His research group explores new semiconductor materials for solar cells and optoelectronic applications.

mailto:wu.yongzhen@ecust.edu.cn

Wiley

Related Perovskite Solar Cells Articles from Brightsurf:

Solar perovskite production on a roll
High-performance perovskite solar cells are made using a manufacturing-friendly liquid-based process suitable for roll to roll production.

Promising strategies for durable perovskite solar cells
Perovskite materials are increasingly popular as the active layer in solar cells, but internal forces in these materials cause distortions in their crystal structures, reducing symmetry and contributing to their intrinsic instability.

Surrey is leading the way in perovskite tandem solar cells
Scientists from the University of Surrey have revealed the significant improvements they are making in perovskite-based solar cells.

Highly efficient perovskite solar cells with enhanced stability and minimised lead leakage
While the power conversion efficiency of perovskite solar cells (PVSCs) has already greatly improved in the past decade, the problems of instability and potential environmental impact are yet to be overcome.

Perovskite and organic solar cells prove successful on a rocket flight in space
Almost all satellites are powered by solar cells - but solar cells are heavy.

Perovskite and organic solar cells rocketed into space
For the first time, researchers in Germany sent perovskite and organic solar cells on a rocket into space.

Perovskite solar cells developed by NTU Singapore scientists record highest power conversion
A team of researchers at the Nanyang Technological University, Singapore (NTU Singapore) has created a perovskite solar mini module that has recorded the highest power conversion efficiency of any perovskite-based device larger than 10 cm2.

Organic small molecule hole-transporting layers toward efficient p-i-n perovskite solar cells
Researchers proposed a concept for designing small-molecule HTL materials with supramolecular interactions and inverse diffusion properties.

On the road to non-toxic and stable perovskite solar cells
The promising halide perovskite materials for solar energy conversion show high efficiencies, but this comes at a cost: The best perovskite materials incorporate toxic lead which poses a hazard to the environment.

X-rays reveal in situ crystal growth of lead-free perovskite solar panel materials
Lead-based perovskites efficiently turn light into electricity but they also present some major drawbacks: the most efficient materials are not very stable, while lead is a toxic element.

Read More: Perovskite Solar Cells News and Perovskite Solar Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.