CMOS-compatible 3D ferroelectric memory with ultralow power and high speed

January 18, 2021

As we enter the era of superintelligence and hyper-connected Fourth Industrial Revolution, the importance of high-density and high-performance memory is greater than ever. Currently, the most widely used NAND flash memory has issues of high power consumption, slow operation speed, and vulnerability to repetitive use since it relies on the charge trap effect to store information. To this, a POSTECH research team has recently demonstrated a ferroelectric memory that exceedingly surpasses the performance of the conventional flash memory in terms of operation speed, power consumption, and device reliability.

A POSTECH research team - led by Professor Jang-Sik Lee, and Ph.D. candidates Min-Kyu Kim and Ik-Jyae Kim of the Department of Materials Science and Engineering - has demonstrated a unique strategy to fabricate a ferroelectric memory by applying hafnia-based ferroelectrics and oxide semiconductors. This approach yields memory performance that could be achieved neither by the conventional flash memory nor by the previous perovskite ferroelectric memories. Device simulations have confirmed that this strategy can realize ultrahigh-density 3D memory integration.

The ferroelectric memory has gained attention so far for its potential to operate at higher speed with lower power consumption compared to the conventional flash memory. But its commercialization has been deterred due to the high processing temperature, difficulty in scaling, and non-compatibility with the conventional semiconductor processes.

The research team tackled these issues by using the hafnia-based ferroelectrics and oxide semiconductors. The new material and structure ensure low power consumption and high speed; achieve high stability by using oxide semiconductors as channel material to lower the process temperature and suppress the formation of the unwanted interfacial layer. As a result, the researchers confirmed that the fabricated device can operate at a voltage four times lower than that of the conventional flash memory at a speed several hundred times faster and remain stable even when repeatedly used more than 100 million times. In particular, a ferroelectric material and an oxide semiconductor were stacked by an atomic layer deposition to secure a processing technology suitable for manufacturing 3D devices. The team had proposed that high-performance devices can be manufactured under 400°C with much simpler process than that of the conventional flash memory device.

"We have developed the core technology to realize the next-generation of highly integrated and high-performance memory that overcomes the limitations of the conventional 3D NAND flash memory," remarked Professor Jang-Sik Lee who led the study. He added, "This technology is not only applicable to next-generation memory devices, but also to ultra-low-power and ultrafast highly-integrated universal memory and in-memory computing that are vital to industries like AI and self-driving cars in the future."
Recently published in Science Advances, this research was conducted with the support from Samsung Electronics.

Pohang University of Science & Technology (POSTECH)

Related Science Articles from Brightsurf:

75 science societies urge the education department to base Title IX sexual harassment regulations on evidence and science
The American Educational Research Association (AERA) and the American Association for the Advancement of Science (AAAS) today led 75 scientific societies in submitting comments on the US Department of Education's proposed changes to Title IX regulations.

Science/Science Careers' survey ranks top biotech, biopharma, and pharma employers
The Science and Science Careers' 2018 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.

Science in the palm of your hand: How citizen science transforms passive learners
Citizen science projects can engage even children who previously were not interested in science.

Applied science may yield more translational research publications than basic science
While translational research can happen at any stage of the research process, a recent investigation of behavioral and social science research awards granted by the NIH between 2008 and 2014 revealed that applied science yielded a higher volume of translational research publications than basic science, according to a study published May 9, 2018 in the open-access journal PLOS ONE by Xueying Han from the Science and Technology Policy Institute, USA, and colleagues.

Prominent academics, including Salk's Thomas Albright, call for more science in forensic science
Six scientists who recently served on the National Commission on Forensic Science are calling on the scientific community at large to advocate for increased research and financial support of forensic science as well as the introduction of empirical testing requirements to ensure the validity of outcomes.

World Science Forum 2017 Jordan issues Science for Peace Declaration
On behalf of the coordinating organizations responsible for delivering the World Science Forum Jordan, the concluding Science for Peace Declaration issued at the Dead Sea represents a global call for action to science and society to build a future that promises greater equality, security and opportunity for all, and in which science plays an increasingly prominent role as an enabler of fair and sustainable development.

PETA science group promotes animal-free science at society of toxicology conference
The PETA International Science Consortium Ltd. is presenting two posters on animal-free methods for testing inhalation toxicity at the 56th annual Society of Toxicology (SOT) meeting March 12 to 16, 2017, in Baltimore, Maryland.

Citizen Science in the Digital Age: Rhetoric, Science and Public Engagement
James Wynn's timely investigation highlights scientific studies grounded in publicly gathered data and probes the rhetoric these studies employ.

Science/Science Careers' survey ranks top biotech, pharma, and biopharma employers
The Science and Science Careers' 2016 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.

Three natural science professors win TJ Park Science Fellowship
Professor Jung-Min Kee (Department of Chemistry, UNIST), Professor Kyudong Choi (Department of Mathematical Sciences, UNIST), and Professor Kwanpyo Kim (Department of Physics, UNIST) are the recipients of the Cheong-Am (TJ Park) Science Fellowship of the year 2016.

Read More: Science News and Science Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to