Novel organoid models: Illuminating path to cervical cancers

January 18, 2021

Organoids are increasingly being used in biomedical research. These are organ-like structures created in the laboratory that are only a few millimetres in size. Organoids can be used to study life processes and the effect of drugs. Because they closely resemble real organs, they offer several advantages over other cell cultures.

Now there are also organoid models developed for the cervix. This part of the female body is particularly at risk to develop cancers. By creating novel organoid models, a group led by Cindrilla Chumduri (Würzburg), Rajendra Kumar Gurumurthy (Berlin) and Thomas F. Meyer (Kiel) have established a unique approach to studying the biology of the cervix and identify key turning points in cancer development.

In results published in the journal Nature Cell Biology, the researchers used the organoids to identify stem cells of the healthy cervix and the changes that arise during metaplasia, an early stage of carcinogenesis.

How precancerous cells develop

The cervix consists of two regions covered by different types of epithelial cells: multilayered squamous and single-layered columnar epithelia that merge at transition zones. These transition zones are hot spots for infection-induced cancer development.

However, an important precancerous condition at these sites is the occurrence of metaplasia, a process whereby the non-resident epithelium replaces the resident epithelium. The researchers have now revealed the origin of these metaplastic cells and how they are regulated.

For the first time, the researchers have created a complete cellular atlas of the uterine cervix. They discovered that the stratified and columnar epithelia at the cervical transition zone arise from two distinct stem cells. The regeneration of these two epithelial lineages and their homeostasis at the transition zone are controlled by opposing Wnt signals from the underlying stromal compartments.

The researchers also showed how quiescent stem cells are activated, that eventually develop into squamous metaplasia replacing resident columnar epithelium. Among other things, they showed that adenocarcinomas and squamous cell carcinomas arise from different stem cell lineages.

This pioneering and comprehensive finding in this study provides critical insights into the cervix biology and the transition points between the healthy and early event of carcinogenesis.

Research on cancer-causing viruses and bacteria

"These fundamental findings form a basis for further understanding of the mechanisms involved in carcinogenesis at these metaplastic sites. To study how human papillomavirus (HPV), together with superseding bacterial infections, plays a key role in transforming cells to malignancy. Additionally, these critical insights can help to develop diagnostics for the early detection of these two tumor forms and new therapeutic strategies," says Dr Cindrilla Chumduri.

The scientist has been leading a research group at Julius-Maximilians-Universität (JMU) Würzburg since 2019, based at the Biocentre, Chair of Microbiology. Prior to that, she conducted research in Berlin for eight years, first at Max Planck Institute for Infection Biology, then at Charité Universitätsmedizin.

At JMU, the researcher has found an excellent environment for her work. Her research focuses on understanding the interaction of pathogenic microbes and the host tissue at different stages of cancer development. At JMU, Dr Chumduri continues to use organoid models to decipher mechanisms of carcinogenesis induced by pathogens.
-end-


University of Würzburg

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.