A master cancer gene hijacks a 'molecular crowbar' to make breast cancer cells invasive

January 18, 2021

Researchers at the University of Helsinki have defined a cancer invasion machinery, which is orchestrated by a frequently mutated cancer gene called Ras. When signaling from Ras protein becomes abnormally high, like it does in many cancers, this switches on the cellular machinery that helps the cancer cells to depart from the tissue from which the cells have developed.

It has been unclear how the cancer invasion machinery works exactly, until now, as the study finds Ras in the role of Friar Lawrence in Shakespeare's famous play, "Get me an iron crow and bring it straight unto my cell (Romeo and Juliet, 5.2.21-23)." In other words, a "molecular crowbar" seems to execute the job. The new study has been published today at Cancer Research, a journal of the American Association for Cancer Research.

Cancer researcher and the last author of the study, Professor Juha Klefström, explains the findings:

"As long as tumors remain in the original body tissue from which they developed from, they are benign and harmless. The tumor cells only become life-threatening cancer cells, when they acquire the capability to spread into surrounding healthy tissues through a process called invasion. We found that a master cancer protein called Ras activates such invasion machinery in the cells. Central to the function of this machinery is a serine protease called hepsin."

Hepsin is a protease, a type of protein that cleaves other proteins into pieces. Typically, in the breast and other epithelial tissues, serine proteases like hepsin ensure that the epithelial cells are properly glued to the neighboring cells and to a surrounding capsule called the basement membrane. Accordingly, hepsin is found in limited, specific contact sites on the surface of the cell where it binds to other cells and the basement membrane. However, the new study shows, that if Ras becomes converted to its cancer-causing form by an unfortunate mutation, persistent signals from cancer-causing Ras eventually produce too much hepsin, which can then be found all over the cell as opposed to small areas.

"When hepsin is produced in excess, it becomes a crowbar that breaks down the basement membrane. When this insulating capsule has been torn apart, cancerous epithelial cells can invade the surrounding tissues, causing damage and, in the worst case, spread to other organs causing metastases. In essence, we believe that normally hepsin is a good guy that nurtures the basement membrane but when superpowered under the influence of Ras, it becomes a bad guy that instigates the basement membrane breakdown," Klefström adds.

Thwarting a molecular crowbar

Nearly one-fifth of all cancers harbour cancer-causing mutant Ras. The mutant form is especially common in pancreatic and colorectal cancer.

"Ras is not that commonly mutated in breast cancer, which our laboratory studies, but our research shows that mutant Ras hijacks hepsin through a signaling mechanism that is common also in breast cancer. Therefore, our findings are relevant for understanding the mechanisms of how breast cancer spreads", says the first author of the study Dr Topi Tervonen.

Mutant Ras has been a holy grail for drug developers due to its common presence in human cancer. However, the task of developing specific Ras-blocking drugs has turned out to be extremely difficult. If Ras is a difficult drug target, would it be possible to prevent the cancer-causing effects of Ras by blocking the cancerous signals that Ras is sending in the cells?

"Interestingly, we managed to almost completely prevent the damage to basement membrane caused by the Ras cancer protein in a three-dimensional cell culture, when we prevented hepsin from functioning by using specific antibodies. In animal experiments, blocking hepsin also significantly reduced the spread of Ras-expressing tumors to surrounding tissues," Klefström and Tervonen state.

"Our findings help understand the mechanisms of cancer spreading, and they open new ideas and opportunities to develop next generation cancer treatments. Our research still has a ways to go before the clinics though," they continue.

University of Helsinki

Related Breast Cancer Articles from Brightsurf:

Oncotarget: IGF2 expression in breast cancer tumors and in breast cancer cells
The Oncotarget authors propose that methylation of DVDMR represents a novel epigenetic biomarker that determines the levels of IGF2 protein expression in breast cancer.

Breast cancer: AI predicts which pre-malignant breast lesions will progress to advanced cancer
New research at Case Western Reserve University in Cleveland, Ohio, could help better determine which patients diagnosed with the pre-malignant breast cancer commonly as stage 0 are likely to progress to invasive breast cancer and therefore might benefit from additional therapy over and above surgery alone.

Partial breast irradiation effective treatment option for low-risk breast cancer
Partial breast irradiation produces similar long-term survival rates and risk for recurrence compared with whole breast irradiation for many women with low-risk, early stage breast cancer, according to new clinical data from a national clinical trial involving researchers from The Ohio State University Comprehensive Cancer Center - Arthur G.

Breast screening linked to 60 per cent lower risk of breast cancer death in first 10 years
Women who take part in breast screening have a significantly greater benefit from treatments than those who are not screened, according to a study of more than 50,000 women.

More clues revealed in link between normal breast changes and invasive breast cancer
A research team, led by investigators from Georgetown Lombardi Comprehensive Cancer Center, details how a natural and dramatic process -- changes in mammary glands to accommodate breastfeeding -- uses a molecular process believed to contribute to survival of pre-malignant breast cells.

Breast tissue tumor suppressor PTEN: A potential Achilles heel for breast cancer cells
A highly collaborative team of researchers at the Medical University of South Carolina and Ohio State University report in Nature Communications that they have identified a novel pathway for connective tissue PTEN in breast cancer cell response to radiotherapy.

Computers equal radiologists in assessing breast density and associated breast cancer risk
Automated breast-density evaluation was just as accurate in predicting women's risk of breast cancer, found and not found by mammography, as subjective evaluation done by radiologists, in a study led by researchers at UC San Francisco and Mayo Clinic.

Blood test can effectively rule out breast cancer, regardless of breast density
A new study published in PLOS ONE demonstrates that Videssa® Breast, a multi-protein biomarker blood test for breast cancer, is unaffected by breast density and can reliably rule out breast cancer in women with both dense and non-dense breast tissue.

Study shows influence of surgeons on likelihood of removal of healthy breast after breast cancer dia
Attending surgeons can have a strong influence on whether a patient undergoes contralateral prophylactic mastectomy after a diagnosis of breast cancer, according to a study published by JAMA Surgery.

Young breast cancer patients undergoing breast conserving surgery see improved prognosis
A new analysis indicates that breast cancer prognoses have improved over time in young women treated with breast conserving surgery.

Read More: Breast Cancer News and Breast Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.