New antibody library speeds search for new detection tools

January 19, 2003

RICHLAND, Wash. - Scientists at the Department of Energy's Pacific Northwest National Laboratory have extracted part of the human immune system and reconstituted it in brewer's yeast in a fashion that enables powerful machines to quickly identify new antibodies. The advance could have major repercussions for fundamental biological science as well as industries that use antibodies for sensors, biodetectors, diagnostic tools and therapeutic agents.

The technology could replace the need to produce antibodies within animals, such as mice, and opens up new possibilities for rapidly designing medical treatments more acceptable to the human immune system. Antibodies are proteins produced by white blood cells as part of the immune response.

"Our antibody library offers many advantages over traditional approaches. We expect it will be a more effective tool for scientists," said Michael Feldhaus, PNNL scientist and lead author of a paper appearing in the February issue of Nature Biotechnology and posted online Jan. 21. "Regulated expression of these antibodies allows the library to be expanded while maintaining its diversity. Furthermore, our unique identification process means we can screen for antibodies in days rather than the months it may take using other approaches."

Feldhaus and colleague Robert Siegel built a library of 1 billion human antibodies and expressed them on the surface of yeast cells using a platform designed by collaborator Dane Wittrup of the Massachusetts Institute of Technology. The combined technologies offer a more powerful, less expensive method for identifying antibodies.

Antibodies play an increasingly important role in industry because they are effective tools for recognizing specific molecules. When antibodies bind to a specific protein on bacteria, it signals other cells to either kill or remove the bacteria. In medical treatments, antibodies are being injected into the body to seek out specific proteins on cancerous cells, for example, and target treatment to those cells. Biowarfare detectors can use antibodies to locate proteins as a way of identifying harmful agents. Antibodies also are expected to play a major role in helping scientists to more fully understand various biological processes by identifying which proteins are present and if they interact with any other proteins in the cell.

Most importantly, by incorporating Wittrup's yeast surface display method, PNNL scientists can readily modify how an antibody binds to proteins. Being able to increase how tightly a protein and antibody bind together, for example, could increase antibody effectiveness for detecting pathogens or disease.

The library developed at PNNL identifies antibodies more quickly, thus reducing labor costs. To accelerate the identification process, PNNL combined two types of cell sorters ¯ high-throughput parallel magnetic cell sorting and high-resolution linear flow cytometric cell sorting ¯ to isolate specific antibodies very quickly.

Wittrup originally developed the yeast surface display as a way to improve the binding of antibodies to chemicals while working at the University of Illinois in the late 1990s. Now, he uses PNNL's antibody library with his display platform in a multitude of studies, many directed at development of novel cancer therapeutics.

Says Wittrup, "This yeast library provides a powerful and direct route to the in vitro isolation of useful antibodies, and is a complementary approach to analogous alternatives such as phage display and ribosome display. We expect the wide availability of this library will open a door into antibody engineering technology for life sciences researchers currently using classic mouse hybridoma methods to make affinity reagents. PNNL should significantly impact the research community through the broad distribution of this library."
PNNL has received additional funding from the Department of Energy to implement the antibody library for bioterrorism detection. This research was conducted with funding from the National Science Foundation, the Hereditary Disease Foundation, and internal research support from PNNL's Biomolecular Systems Initiative (

Business inquiries on this project or other PNNL research and technologies should be directed to 1-888-375-PNNL or e-mail:

Pacific Northwest National Laboratory is a DOE research facility and delivers breakthrough science and technology in the areas of environment, energy, health, fundamental sciences and national security. Battelle, based in Columbus, Ohio, has operated the laboratory for DOE since 1965.

DOE/Pacific Northwest National Laboratory

Related Antibodies Articles from Brightsurf:

Scientist develops new way to test for COVID-19 antibodies
New research details how a cell-free test rapidly detects COVID-19 neutralizing antibodies and could aid in vaccine testing and drug discovery efforts.

Mussels connect antibodies to treat cancer
POSTECH research team develops innovative local anticancer immunotherapy technology using mussel protein.

For an effective COVID vaccine, look beyond antibodies to T-cells
Most vaccine developers are aiming solely for a robust antibody response against the SARS-CoV-2 virus, despite evidence that antibodies are not the body's primary protective response to infection by coronaviruses, says Marc Hellerstein of UC Berkeley.

Children can have COVID-19 antibodies and virus in their system simultaneously
With many questions remaining around how children spread COVID-19, Children's National Hospital researchers set out to improve the understanding of how long it takes pediatric patients with the virus to clear it from their systems, and at what point they start to make antibodies that work against the coronavirus.

The behavior of therapeutic antibodies in immunotherapy
Since the late 1990s, immunotherapy has been the frontline treatment against lymphomas where synthetic antibodies are used to stop the proliferation of cancerous white blood cells.

Re-engineering antibodies for COVID-19
Catholic University of America researcher uses 'in silico' analysis to fast-track passive immunity

Seroprevalence of antibodies to SARS-CoV-2 in 10 US sites
This study estimates how common SARS-CoV-2 antibodies are in convenience samples from 10 geographic sites in the United States.

Neutralizing antibodies in the battle against COVID-19
An important line of defense against SARS-CoV-2 is the formation of neutralizing antibodies.

Three new studies identify neutralizing antibodies against SARS-CoV-2
A trio of papers describes several newly discovered human antibodies that target the SARS-CoV-2 virus, isolated from survivors of SARS-CoV-2 and SARS-CoV infection.

More effective human antibodies possible with chicken cells
Antibodies for potential use as medicines can be made rapidly in chicken cells grown in laboratories.

Read More: Antibodies News and Antibodies Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to