Superplastic behavior revealed in carbon nanotubes

January 19, 2006

Carbon nanotubes used in the electronics such as cell phones might have a longer life thanks to a strengthening technique pioneered by researchers at the Lawrence Livermore National Laboratory, Boston College and Massachusetts Institute of Technology.

By heating a single-walled carbon nanotube to more than 3,600 degrees Fahrenheit, the nanotube became nearly 280 percent stronger than it was in its original form and its diameter shrunk by 15 times. The discovery has implications in strengthening ceramic and other nanocomposites at high temperatures and is useful in tuning electronics.

"The super-strain we discovered can be used to tune the electronic properties of carbon nanotubes for their applications in microelectronics," said Yinmin (Morris) Wang, of LLNL's Materials Science and Technology Division and a co-author of the paper that appears in the Jan. 19 edition of the journal Nature. Wang also is an important member of the recently established Nanoscale Synthesis and Characterization Laboratory in the Lab's Chemistry and Materials Science Directorate.

Carbon nanotubes are 10,000 times smaller than a human hair and are used in a variety of machines including computers, cell phones and personal handheld devices.

A typical carbon nanotube can be stretched to 15 percent longer than its original length before it fails. But in the high-temperature experiments, the heated nanotube was able to stretch to more than 280 percent of its original length before it broke. The researchers took a 24-nanometer piece of nanotube and stretched it to 91 nanometers before it failed while the diameter was reduced by 15 times from 12 to 0.8 nanometers.

"This kind of intense stretching and reduction in diameter in a carbon nanotube is unprecedented," Wang said. "This super-elongation is due to a full plastic deformation that occurs at high temperatures." Under such high temperatures, the nanotube appears to be completely pliable, resulting in a superplastic deformation that would otherwise be impossible at low temperatures.

"Our surprising discovery of superplasticity in nanotubes should encourage the investigation of their mechanical and electronic behavior at high temperatures," Wang said. "The tubes may find uses as reinforcement agents in ceramics or other nanocomposites for high-temperature applications."

In addition to Wang, the co-authors of the paper include J.Y. Huang and S. Chen of Boston College and M.S. Dresselhaus of MIT.
-end-
Founded in 1952, Lawrence Livermore National Laboratory is a national security laboratory, with a mission to ensure national security and apply science and technology to the important issues of our time. Lawrence Livermore National Laboratory is managed by the University of California for the U.S. Department of Energy's National Nuclear Security Administration.

Laboratory news releases and photos are also available at http://www.llnl.gov/PAO and on UC Newswire.

DOE/Lawrence Livermore National Laboratory

Related Carbon Nanotubes Articles from Brightsurf:

How plantains and carbon nanotubes can improve cars
Researchers from the University of Johannesburg have shown that plantain, a starchy type of banana, is a promising renewable source for an emerging type of lighter, rust-free composite materials for the automotive industry.

New production method for carbon nanotubes gets green light
A new method of producing carbon nanotubes -- tiny molecules with incredible physical properties used in touchscreen displays, 5G networks and flexible electronics -- has been given the green light by researchers, meaning work in this crucial field can continue.

Growing carbon nanotubes with the right twist
Researchers synthetize nanotubes with a specific structure expanding previous theories on carbon nanotube growth.

Research shows old newspapers can be used to grow carbon nanotubes
New research has found that old newspaper provide a cheap and green solution for the bulk production of single walled carbon nanotubes.

Clean carbon nanotubes with superb properties
Scientists at Aalto University, Finland, and Nagoya University, Japan, have found a new way to make ultra-clean carbon nanotube transistors with superior semiconducting properties.

Dietary fiber effectively purifies carbon nanotubes
A dietary fiber can help separate out semiconducting carbon nanotubes used for making transistors for flexible electronics.

Why modified carbon nanotubes can help the reproducibility problem
Scientists at Tokyo Institute of Technology (Tokyo Tech) conducted an in-depth study on how carbon nanotubes with oxygen-containing groups can be used to greatly enhance the performance of perovskite solar cells.

Tensile strength of carbon nanotubes depends on their chiral structures
Single-walled carbon nanotubes should theoretically be extremely strong, but it remains unclear why their experimental tensile strengths are lower and vary among nanotubes.

New study reveals carbon nanotubes measurement possible for the first time
Swansea University scientists report an entirely new approach to manipulation of carbon nanotubes that allows physical measurements to be made on carbon nanotubes that have previously only been possible by theoretical computation.

Neural networks will help manufacture carbon nanotubes
A team of scientists from Skoltech's Laboratory of Nanomaterials proposed a neural-network-based method for monitoring the growth of carbon nanotubes, preparing the ground for a new generation of sophisticated electronic devices.

Read More: Carbon Nanotubes News and Carbon Nanotubes Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.