Molecular battle in cancer cells offers clues for treatment

January 19, 2011

CHAPEL HILL, N.C. - Scientists around the world have been hot on the trail of a genetic mutation closely associated with some brain cancers and leukemia since the mutation's discovery in 2008. The hunt is now yielding fruit. In the Jan. 18, 2011 issue of Cancer Cell, researchers reveal how the mutation contributes to cancer development and suggest potential ways to counter its effects.

About 75 percent of people with low-grade brain tumors and 20 percent of people with acute myeloid leukemia have a mutated version of a gene known as IDH. IDH helps cells metabolize, or eat, food. "We now know that IDH represents the most frequently mutated metabolic gene in human cancer. And that changes the landscape of cancer research in metabolism quite a lot," said Yue Xiong, PhD, William R. Kenan Jr. professor of biochemistry and biophysics at the UNC Lineberger Comprehensive Cancer Center.

Xiong and collaborators at UNC, the University of California San Diego, and the Shanghai Medical College of Fudan University in China discovered that the IDH mutation sets off a battle inside cells between two metabolites, small molecules produced by metabolic enzymes. On the good side--the side that leads to normal cell growth--is a molecule called ?-KG. On the bad side--the side that leads to cancer--is a molecule called 2-HG.

The researchers discovered that cells with the IDH mutation produce less ?-KG and more 2-HG than normal cells. 2-HG then outcompetes ?-KG, disabling a whole family of enzymes that depend on ?-KG to do their jobs in the cell. Normal cell functions break down, contributing to the development of cancer.

Two of the affected enzymes are also involved in controlling gene expression, so if 2-HG wins the battle, it can also activate other genes that lead to cancer growth.

Bolstering ?-KG to help fight 2-HG could offer a new treatment option for patients with the mutation. "?-KG is a natural product of the body. So we know we can survive it, we know it's not toxic. That gives us a window of opportunity," said Xiong.

"In terms of future therapeutic interventions for IDH-mutated tumors, there are two directions we could go," Xiong said. "One is developing a drug that inhibits the ability of the mutant enzyme from producing 2-HG. Another is to somehow provide ?-KG back to the patients with mutated IDH to battle 2-HG."

Such therapies would help only those cancer patients with IDH mutations. "We no longer believe there will be a single silver bullet, a drug to treat and cure all types of cancers," Xiong said. "Instead, we are looking into the therapeutic treatment of individual types of cancer. Therefore, a specific agent that is targeting a very specific event such as tumor with mutated IDH now becomes much more valuable."

In 2010, more than 13,000 people died from brain and other nervous system cancers, and more than 20,000 died from leukemia. A drug that helps even a portion of patients with these cancers can still affect a lot of people, said Xiong.
-end-
Research collaborators included Yi Zhang, Kenan distinguished professor of biochemistry and biophysics at UNC and an investigator of the Howard Hughes Medical Institute, Stephen Frye of the UNC Eshelman School of Pharmacy, Kun-Liang Guan of the University of California San Diego, and Shi-min Zhao and students at Shanghai Medical College of Fudan University.

University of North Carolina Health Care

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.