Nav: Home

Ants find their way even while traveling backward

January 19, 2017

Some of us struggle to find our way back home while walking from an unfamiliar location in the usual, forward direction. Now imagine if you had to stay on the right path while walking backward or even spinning around and around. Now researchers reporting in Current Biology on January 19 have found that ants can do exactly that. They also have new insight into the mental gymnastics required.

"Our main finding is that ants can decouple their direction of travel from their body orientation," says Antoine Wystrach of the University of Edinburgh. "They can maintain a direction of travel, let's say north, independently of their current body orientation."

In fact, ants can keep themselves headed in the northerly direction by going forward (facing north), he says, backward (facing south), or sideways (facing east or west). The discovery is noteworthy because it challenges the notion that insects are limited to performing simple, stimulus-response behaviors.

Wystrach and colleagues knew that ants often manage heavy food items by pulling them along backward. Another report demonstrated that the insects' navigational abilities weren't impaired under those circumstances. The insects had no trouble making it back to the nest with their load. The findings suggested that the ants might be able to recognize the world around them regardless of the direction they were facing.

"This was at odds with our understanding of how memories of the scenes are stored in the insect brain," Wystrach says.

To find out how the insects were really managing, the researchers tested desert ants living in their natural environment. They sunk barriers into the ground, forcing the ants along a one-way route to the nest and then offered them either a small cookie or a larger, more unwieldy one.

Ants with the small cookie dashed off to the south and made a sharp right turn. Ants traveling backward while pulling a larger cookie that didn't stop to look around or "peek" missed the turn. But, the researchers found, when those ants hauling their load backward did stop to take a peek in the forward direction, their navigational abilities were restored. In other words, they recognized their new direction and memorized it for use while walking backward.

"Such a peeking behavior is impressive in itself as it implies synergy between at least three different types of memory: the memory of the visual scene, the memory of the new direction to follow, and the memory of the location of the cookie left behind," Wystrach says.

Further experiments showed the ants kept to the path by following cues in the sky. They could also maintain their path while traveling in any direction--forward, backward, or sideways.

The findings show that the ants remembered the scene based on how it looked while facing forward. That's why they had to turn around and look. But ants are then able to transfer that memory to a representation of directions centered on the world rather than on themselves.

That's pretty impressive, according to the researchers. "Until recently, we thought their navigation was based on stereotyped strategies from distinct brain modules," Wystrach says. In contrast, "our results show that it is about the fine orchestration of multiple representation and memories involving the transfer of information between different brain areas."

Wystrach says the findings are a reminder that ants are "not simple little automata." Rather, their behaviors are flexible, emerging from the fine orchestration of multiple representation and memories. "The more research advances, the more sophisticated we realize insects are," he says.

The researchers are now curious to conduct further tests of the ants' cognitive skill. For instance, when they drop a cookie to look around and then resume dragging it, do they actually remember the weight of the cookie? Do they remember that it needed to be dragged backward? Those details can now be easily tested.

In the longer term, Wystrach says, they now hope to explore the interplay between different brain areas that make those behaviors possible.
-end-
This work was supported by the EPSRC.

Current Biology, Schwarz and Mangan et al.: "How Ants Use Vision When Homing Backward" http://www.cell.com/current-biology/fulltext/S0960-9822(16)31466-X

Current Biology (@CurrentBiology), published by Cell Press, is a bimonthly journal that features papers across all areas of biology. Current Biology strives to foster communication across fields of biology, both by publishing important findings of general interest and through highly accessible front matter for non-specialists. Visit: http://www.cell.com/current-biology. To receive Cell Press media alerts, contact press@cell.com.

Cell Press

Related Memory Articles:

Previously claimed memory boosting font 'Sans Forgetica' does not actually boost memory
It was previously claimed that the font Sans Forgetica could enhance people's memory for information, however researchers from the University of Warwick and the University of Waikato, New Zealand, have found after carrying out numerous experiments that the font does not enhance memory.
Memory boost with just one look
HRL Laboratories, LLC, researchers have published results showing that targeted transcranial electrical stimulation during slow-wave sleep can improve metamemories of specific episodes by 20% after only one viewing of the episode, compared to controls.
VR is not suited to visual memory?!
Toyohashi university of technology researcher and a research team at Tokyo Denki University have found that virtual reality (VR) may interfere with visual memory.
The genetic signature of memory
Despite their importance in memory, the human cortex and subcortex display a distinct collection of 'gene signatures.' The work recently published in eNeuro increases our understanding of how the brain creates memories and identifies potential genes for further investigation.
How long does memory last? For shape memory alloys, the longer the better
Scientists captured live action details of the phase transitions of shape memory alloys, giving them a better idea how to improve their properties for applications.
A NEAT discovery about memory
UAB researchers say over expression of NEAT1, an noncoding RNA, appears to diminish the ability of older brains to form memories.
Molecular memory can be used to increase the memory capacity of hard disks
Researchers at the University of Jyväskylä have taken part in an international British-Finnish-Chinese collaboration where the first molecule capable of remembering the direction of a magnetic above liquid nitrogen temperatures has been prepared and characterized.
Memory transferred between snails
Memories can be transferred between organisms by extracting ribonucleic acid (RNA) from a trained animal and injecting it into an untrained animal, as demonstrated in a study of sea snails published in eNeuro.
An immunological memory in the brain
Inflammatory reactions can change the brain's immune cells in the long term -- meaning that these cells have an 'immunological memory.' This memory may influence the progression of neurological disorders that occur later in life, and is therefore a previously unknown factor that could influence the severity of these diseases.
Anxiety can help your memory
Anxiety can help people to remember things, a study from the University of Waterloo has found.
More Memory News and Memory Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Making Amends
What makes a true apology? What does it mean to make amends for past mistakes? This hour, TED speakers explore how repairing the wrongs of the past is the first step toward healing for the future. Guests include historian and preservationist Brent Leggs, law professor Martha Minow, librarian Dawn Wacek, and playwright V (formerly Eve Ensler).
Now Playing: Science for the People

#566 Is Your Gut Leaking?
This week we're busting the human gut wide open with Dr. Alessio Fasano from the Center for Celiac Research and Treatment at Massachusetts General Hospital. Join host Anika Hazra for our discussion separating fact from fiction on the controversial topic of leaky gut syndrome. We cover everything from what causes a leaky gut to interpreting the results of a gut microbiome test! Related links: Center for Celiac Research and Treatment website and their YouTube channel
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.