Nav: Home

Seeking structure with metagenome sequences

January 19, 2017

For proteins, appearance matters. These important molecules largely form a cell's structures and carry out its functions: proteins control growth and influence mobility, serve as catalysts, and transport or store other molecules. Comprised of long amino acid chains, the one-dimensional amino acid sequence may seem meaningless on paper. Yet when viewed in three dimensions, researchers can see what a protein's structure is and how a protein's structure, and particularly the way it folds, determines its functions.

There are close to 15,000 protein families - groups of families that share an evolutionary origin - in the database Pfam. For nearly a third (4,752) of these protein families, there is at least one protein in each family that already has an experimentally determined structure. For another third (4,886) of the protein families, comparative models could be built with some degree of confidence. For the final third (5,211) of the protein families in the database, however, no structural information exists.

In the January 20, 2017 issue of Science, a team led by University of Washington's David Baker in collaboration with researchers at the U.S. Department of Energy Joint Genome Institute (DOE JGI), a DOE Office of Science User Facility, reports that structural models have been generated for 614 or 12 percent of the protein families that had previously had no structural information available. "That this could be accomplished using computational modeling methods was not at all apparent 5 years ago," the team noted in their paper. This accomplishment was made possible through a collaboration in which the Baker lab's protein structure prediction server Rosetta analyzed the metagenomic sequences publicly available on the Integrated Microbial Genomes (IMG) system run by the DOE JGI.

"A large number of protein families (in Pfam) have low number of sequences," said study first author Sergey Ovchinnikov, a graduate student in the Baker lab. "This resulted in two consequences: 1) nobody cared about these families (since they were small); and, 2) co-evolution methods could not be applied to study them. With metagenomics, we found that some of these neglected families with only a handful of sequences so far, can now become as large as some of the most studied ones, when metagenomics data are taken into account! Moreover, we can offer a 3D model of a representative sequence from the family. We hope this will spark interest in some of these families."

Armed with genome sequences, researchers like Baker have been able to identify sets of amino acids that evolve simultaneously, even though they are nowhere near each other on the unfolded chain. Such events suggests these amino acids are neighbors in the folded protein, offering researchers hints as to the protein's structure. Structural proximity can suggest a functional relationship and thus natural selection, acting on the function, can favor not just one amino acid but all that are in the set.

Nikos Kyrpides, DOE JGI Prokaryote Super Program head, said the collaboration between the Baker lab and the DOE JGI allowed the team to come up with a powerful way of predicting structures and structural alignments. "Such efforts, were previously restricted on protein families generated from sequences found on the isolate genome only. These genomes comprise about 200 million sequences. As expected, when we added on those our metagenomics data, harnessing the 5 billion assembled metagenome sequences available on our IMG/M database, we were able to dramatically increase the coverage of many of the known protein families. Efforts like this one heavily depend on the availability of assembled metagenomics sequences, which is an advantage the DOE JGI brings to the table with our high quality assemblies."

Kyrpides added that this work, which also involved DOE JGI researchers Neha Varghese and George Pavlopoulos, embodies another kind of collaboration that he'd like to see encouraged. "People came to us because we are maintaining the largest integration of assembled metagenomes. The application of such tools on our data provides a great example of how the larger community can utilize JGI resources for discovery. We would very much like to see more success stories like this one through a new Data Science call between the JGI and the National Energy Research Scientific Computing Center (NERSC)."

The JGI-NERSC Microbiome Data Science call will enable users to perform state-of-the-art computational genomics and metagenomics research and help them translate sequence information, generated by the DOE JGI or elsewhere, into biological discovery. This proposal call builds upon the success of "Facilities Integrating Collaborations for User Science" (FICUS) initiative, established to encourage and enable researchers to more easily integrate the expertise and capabilities of multiple national user facilities into their research. Applications for JGI-NERSC collaborative science call are currently being accepted until March 1, 2017. For more information about the call, go to: http://jgi.doe.gov/user-program-info/community-science-program/how-to-propose-a-csp-project/ficus-jgi-nersc/.
-end-
The U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility at Lawrence Berkeley National Laboratory, is committed to advancing genomics in support of DOE missions related to clean energy generation and environmental characterization and cleanup. DOE JGI, headquartered in Walnut Creek, Calif., provides integrated high-throughput sequencing and computational analysis that enable systems-based scientific approaches to these challenges. Follow @doe_jgi on Twitter.

DOE's Office of Science is the largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

DOE/Joint Genome Institute

Related Amino Acids Articles:

A unique amino acid for brain cancer therapy
Researchers discover potential application of amino acid taurine in photodynamic therapy for brain cancer.
Nickel: A greener route to fatty acids
Chemists designed a nickel catalyst that easily transforms petroleum feedstocks into valuable compounds like fatty acids.
Amino acids in diet could be key to starving cancer
Cutting out certain amino acids - the building blocks of proteins -- from the diet of mice slows tumor growth and prolongs survival, according to new research published in Nature.
How to brew high-value fatty acids with brewer's yeast
Researchers at Goethe University Frankfurt have succeeded in producing fatty acids in large quantities from sugar or waste containing sugar with the help of yeasts.
Diverse natural fatty acids follow 'Golden Mean'
Bioinformatics scientists at Friedrich Schiller University in Jena (Germany) have discovered that the number of theoretically possible fatty acids with the same chain length but different structures can be determined with the aid of the famous Fibonacci sequence.
Simple fats and amino acids to explain how life began
Life is a process that originated 3.5 billion years ago.
Newly revealed amino acid function could be used to boost antioxidant levels
A Japanese research team has become the first in the world to discover that 2-aminobutyric acid is closely involved in the metabolic regulation of the antioxidant glutathione, and that it can effectively raise levels of glutathione in the body when ingested.
An amino acid controls plants' breath
IBS plant scientists demonstrate that the amino acid L-methionine activates a calcium-channel regulating the opening and closing of tiny plant pores.
Genetic differences in amino acid metabolism are linked to a higher risk of diabetes
A study published today in the journal PLOS Medicine has identified the five genetic variants associated with higher levels of the branched-chain amino acids isoleucine, leucine and valine.
Withholding amino acid depletes blood stem cells, Stanford researchers say
A new study shows that a diet deficient in valine effectively depleted the blood stem cells in mice and made it possible to perform a blood stem cell transplantation on them.

Related Amino Acids Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...